SI Units: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
Bradley Monk (talk | contribs) No edit summary |
||
(3 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
NOTE: YOU CANT USE UPPER CASE LETTERS IN MATH FUNCTIONS | |||
<math>1 m = c * 1 | <math>1 m = c * \frac{1}{299792458 s}</math> | ||
<math>1 | <math>1 ml = 1 cm^2</math> | ||
<math>1 kg = 1.000025 L</math> water | <math>1 kg = 1.000025 L</math> water | ||
Line 12: | Line 13: | ||
<math>λν = c</math> | <math>λν = c</math> | ||
c = speed of light 299792458 (m/s) | *c = speed of light 299792458 (m/s) | ||
E = energy of photon | *E = energy of photon | ||
v = frequency | *v = frequency | ||
h = Planck constant = 6.62606e−34 (J•s) or (m^2•kg)/s | *h = Planck constant = 6.62606e−34 (J•s) or (m^2•kg)/s | ||
λ = wavelength | *λ = wavelength | ||
J = joule | *J = joule | ||
e = charge = 1.60217e−19 (C) or (s•A) | *e = charge = 1.60217e−19 (C) or (s•A) | ||
C = coulomb = | *C = coulomb = | ||
k = boltzmann = 1.38065e−23 (J/K) or (m^2•kg•s^−2)/K | *k = boltzmann = 1.38065e−23 (J/K) or (m^2•kg•s^−2)/K | ||
K = kelvin | *K = kelvin | ||
NA = Avogadro# = 6.02214e23 (mol−1). | *NA = Avogadro# = 6.02214e23 (mol−1). | ||
Latest revision as of 01:10, 16 July 2013
NOTE: YOU CANT USE UPPER CASE LETTERS IN MATH FUNCTIONS
water
particles
Failed to parse (syntax error): λν = c
- c = speed of light 299792458 (m/s)
- E = energy of photon
- v = frequency
- h = Planck constant = 6.62606e−34 (J•s) or (m^2•kg)/s
- λ = wavelength
- J = joule
- e = charge = 1.60217e−19 (C) or (s•A)
- C = coulomb =
- k = boltzmann = 1.38065e−23 (J/K) or (m^2•kg•s^−2)/K
- K = kelvin
- NA = Avogadro# = 6.02214e23 (mol−1).
TeX Syntax (forcing PNG) | TeX Rendering | HTML Syntax | HTML Rendering |
---|---|---|---|
<math>\alpha</math>
|
{{math|<VAR>α</VAR>}}
|
α | |
<math> f(x) = x^2\,</math>
|
{{math|''f''(<var>x</var>) {{=}} <var>x</var><sup>2</sup>}}
|
f(x) = x2 | |
<math>\sqrt{2}</math>
|
{{math|{{radical|2}}}}
|
√2 | |
<math>\sqrt{1-e^2}</math>
|
{{math|{{radical|1 − ''e''²}}}}
|
√1 − e² |
\operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt = \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}}