SI Units: Difference between revisions

From bradwiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(3 intermediate revisions by one other user not shown)
Line 1: Line 1:
NOTE: YOU CANT USE UPPER CASE LETTERS IN MATH FUNCTIONS


<math>1 m = c * 1/299792458 s</math>
<math>1 m = c * \frac{1}{299792458 s}</math>


<math>1 mL = 1 cm^2</math>
<math>1 ml = 1 cm^2</math>


<math>1 kg = 1.000025 L</math> water  
<math>1 kg = 1.000025 L</math> water  
Line 12: Line 13:
<math>λν = c</math>
<math>λν = c</math>


c = speed of light 299792458 (m/s)
*c = speed of light 299792458 (m/s)
E = energy of photon
*E = energy of photon
v = frequency
*v = frequency
h = Planck constant = 6.62606e−34 (J•s) or (m^2•kg)/s
*h = Planck constant = 6.62606e−34 (J•s) or (m^2•kg)/s
λ = wavelength
*λ = wavelength
J = joule
*J = joule
e = charge = 1.60217e−19 (C) or (s•A)
*e = charge = 1.60217e−19 (C) or (s•A)
C = coulomb =  
*C = coulomb =  
k = boltzmann = 1.38065e−23 (J/K) or (m^2•kg•s^−2)/K
*k = boltzmann = 1.38065e−23 (J/K) or (m^2•kg•s^−2)/K
K = kelvin
*K = kelvin
NA = Avogadro# = 6.02214e23 (mol−1).
*NA = Avogadro# = 6.02214e23 (mol−1).





Latest revision as of 01:10, 16 July 2013

NOTE: YOU CANT USE UPPER CASE LETTERS IN MATH FUNCTIONS

water

particles

Failed to parse (syntax error): λν = c

  • c = speed of light 299792458 (m/s)
  • E = energy of photon
  • v = frequency
  • h = Planck constant = 6.62606e−34 (J•s) or (m^2•kg)/s
  • λ = wavelength
  • J = joule
  • e = charge = 1.60217e−19 (C) or (s•A)
  • C = coulomb =
  • k = boltzmann = 1.38065e−23 (J/K) or (m^2•kg•s^−2)/K
  • K = kelvin
  • NA = Avogadro# = 6.02214e23 (mol−1).


TeX Syntax (forcing PNG) TeX Rendering HTML Syntax HTML Rendering
<math>\alpha</math> {{math|<VAR>&alpha;</VAR>}} α
<math> f(x) = x^2\,</math> {{math|''f''(<var>x</var>) {{=}} <var>x</var><sup>2</sup>}} f(x) = x2
<math>\sqrt{2}</math> {{math|{{radical|2}}}} 2
<math>\sqrt{1-e^2}</math> {{math|{{radical|1 &minus; ''e''&sup2;}}}} 1 − e²



 \operatorname{erfc}(x) =
 \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt =
 \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}}