- From Tatavarty:
“
|
Synaptic scaling is a cell-autonomous process in which neurons detect changes in their own firing through a set of calcium-dependent sensors, and then slowly increase or decrease the accumulation of synaptic AMPARs to compensate (Turrigiano et al., 1998; Ibata et al., 2008; Goold and Nicoll, 2010).
|
”
|
- From Sheng:
“
|
PSD-95 family molecules outnumber AMPARs (up to 20-fold). Quantitative MS counted 60 copies of AMPAR subunits (GluR1, GluR2, GluR3) in the average PSD, which equates to 15 tetrameric AMPAR channels, of which >80 percent appears to be GluR1/GluR2 heteromers. Fifteen may be an underestimate because some postsynaptic AMPAR channels might be extracted by Triton during purification of PSDs.
|
”
|
Given those two observations, I wrote a matlab function that allowed for homeostatic scaling. Based on Sheng's review (and a few other sources), on average, there are about 20 AMPARs per PSD. In our current model we have 2 PSD areas, so there should be about 40 total receptors (combined) in those PSDs, on average.
To anthropomorphise, we want our modeled neuron to be homeostatically-content when there are 40 receptors in its synapses (content/satisfied meaning all diffusion parameters are running at some predefined baseline value, or whatever we specify). We can also specify a range of values at which our neuron is content; I arbitrarily set this range to 25-55 receptors. Just to be clear, that is 25-55 total combined receptors -- let's call this value PSDT. For example, PSD1 could have 35 receptors and PSD2 could have 10 receptors, making PSDT ≃ 45. If both PSD1 and PSD2 have 16 receptors each, PSDT ≃ 32. Our modeled neuron would be satisfied with either of those scenarios. However, if PSD1 had 35 and PSD2 had 30, making PSDT ≃ 65, our neuron will not be happy, and should take some action to decrease the total number of AMPARs being expressed at its PSDs.
- Homeostatic Scaling Function
IF PSDT > 55 THEN increase the PSD diffusion rates (make less sticky)
IF PSDT < 25 THEN decrease the PSD diffusion rates (make more sticky)
Remember the model functions are modular, so we could actually do something as simple as above, and directly alter the PSD diffusion rates. But we also want our modular functions to "play nice" with each other -- so if we are scaling PSD diffusion rates based on SAP expression ( function doSAP ≃ SAPfunc(on) ), instead of directly setting Dpsd we'll instead want to increase or decrease SAP expression. Doing this will automatically update the diffusion rate of respective PSD areas. The easiest way to incorporate this function is by manipulating the SAP repulsion lattice constant (L) based on PSDT.
- When L≃2 the SAP cluster is relatively stable
- When L≃1 the cluster starts to grow
- When L≃3 the cluster starts to shrink.
So when PSDT > 55 then L ≃ 3 and when PSDT < 25 then L≃1 and when PSDT is between 25 and 55 then L≃2. And I should note that these are global changes to L (both PSD areas get the same L), because in a real-life scenario the neuron only cares that it's firing too much or too little, not necessarily which of its hundreds of PSDs are responsible. Does this make sense?
The homeostatic function can be made more complex, or flexible, but it can really be this simple (and I know you are a proponent of eloquence), which is nice for when we are testing out predictions unrelated to homeostatic scaling. But from here, we can begin to consider what manipulations to this function would make it more true-to-life. For example, homeostatic scaling is a relatively slow process -- maybe we only want the model to check the PSDT value once every 10 minutes, maybe we want to make more subtle changes in L, maybe we want to change another parameter instead of L. The choice is ours. But ultimately, we want to update the model based on what we know happens in the real world.