ADSP t-SNE: Difference between revisions

From bradwiki
Jump to navigation Jump to search
No edit summary
mNo edit summary
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
The Alzheimer's Disease Sequencing Project ([https://www.niagads.org/adsp/content/home ADSP]) has made available WES data in vcf format. The following is a step-by-step analysis walkthrough of this dataset. Here the ultimate goal is to develop a platform for Alzheimer's Disease diagnosis based on genome sequencing information. The data for this analysis can be downloaded here:
t-Distributed Stochastic Neighbor Embedding (tSNE) is a technique like PCA that allows one perform dimensionality reduction for visualization purposes. Supposedly tSNE does better than PCA at revealing clusters in high-dimensional data. Whereas PCA only allows you to visualize two or three components directly against each at the same time -- tSNE uses math magic to coerce a high-dimensional dataset into either a 2D or 3D array.
 
: [https://drive.google.com/open?id=1e3tIbQhcDUF1vofAwf4oYVOl8XriC44v ADSP_WES_VCF_LATEST_RELEASE.mat].
 
Both the dataset and the following analysis code are in MATLAB format. Note however there is an [https://cran.r-project.org/web/packages/R.matlab/index.html R package] for reading .mat files. All MATLAB code and custom functions used in the demo walkthrough below can be downloaded here:
 
: [https://github.com/subroutines/genos GENOS GITHUB CODE REPO]


{{SmallBox|float=right|clear=none|margin=0px 0px 8px 18px|width=170px|font-size=13px|Other Analyses|txt-size=11px|
{{SmallBox|float=right|clear=none|margin=0px 0px 8px 18px|width=170px|font-size=13px|Other Analyses|txt-size=11px|
1. [[ADSP|Intro]]<br>
1. [[AD|Intro]]<br>
4. [[ADSP Neural Nets|More Neural Nets]]<br>
4. [[AD Neural Nets|More Neural Nets]]<br>
2. [[ADSP PCA|PCA]]<br>
2. [[AD PCA|PCA]]<br>
3. [[ADSP t-SNE|t-SNE]]<br>
3. [[AD t-SNE|t-SNE]]<br>
5. [[ADSP Stats|Descriptive Statistics]]<br>
5. [[AD Stats|Descriptive Statistics]]<br>
}}
}}


<br> <br> <br> <br> <br> <br> <br>
t-SNE models each multi-dim object against a point on a euclidean surface in such a way that similar features are modeled by nearby point functions and dissimilar features are modeled by distant point functions. It then projects these points onto the plane allowing you visualize, what would effectively be, all the interesting principal component combinations - the ones that yield unique clusters - simultaneously.


<br> <br> <br>


 
==t-SNE Code==
==tSNE : t-Distributed Stochastic Neighbor Embedding==
----
----
<br><br>
<br><br>
Line 31: Line 25:




MATDATA = 'ADSPdata.mat';
MATDATA = 'ADdata.mat';
which(MATDATA)
which(MATDATA)
load(MATDATA)
load(MATDATA)


clearvars -except ADSP
clearvars -except AD






%% CARBON COPY MAIN VARIABLES FROM ADSP.STRUCT
%% CARBON COPY MAIN VARIABLES FROM AD.STRUCT


LOCI = ADSP.LOCI(:,1:17);
LOCI = AD.LOCI(:,1:17);
CASE = ADSP.CASE;
CASE = AD.CASE;
CTRL = ADSP.CTRL;
CTRL = AD.CTRL;
PHEN = ADSP.PHEN;
PHEN = AD.PHEN;


clearvars -except ADSP LOCI CASE CTRL PHEN
clearvars -except AD LOCI CASE CTRL PHEN




Line 65: Line 59:




clearvars -except ADSP LOCI CASE CTRL PHEN PHE PHECASE PHECTRL
clearvars -except AD LOCI CASE CTRL PHEN PHE PHECASE PHECTRL




Line 96: Line 90:




clearvars -except ADSP LOCI CASE CTRL PHEN PHE PHECASE PHECTRL
clearvars -except AD LOCI CASE CTRL PHEN PHE PHECASE PHECTRL




Line 117: Line 111:




clearvars -except ADSP LOCI CASE CTRL PHEN PHE PHECASE PHECTRL
clearvars -except AD LOCI CASE CTRL PHEN PHE PHECASE PHECTRL




Line 150: Line 144:




clc; clearvars -except ADSP LOCI CASE CTRL PHEN PHE PHECASE PHECTRL
clc; clearvars -except AD LOCI CASE CTRL PHEN PHE PHECASE PHECTRL
disp(LOCI(1:9,:))
disp(LOCI(1:9,:))


Line 164: Line 158:




clearvars -except ADSP LOCI CASE CTRL PHEN PHE PHECASE PHECTRL...
clearvars -except AD LOCI CASE CTRL PHEN PHE PHECASE PHECTRL...
AMX AMXCASE AMXCTRL  
AMX AMXCASE AMXCTRL  


Line 184: Line 178:




clearvars -except ADSP LOCI CASE CTRL PHEN PHE PHECASE PHECTRL...
clearvars -except AD LOCI CASE CTRL PHEN PHE PHECASE PHECTRL...
AMX AMXCASE AMXCTRL  
AMX AMXCASE AMXCTRL  


Line 202: Line 196:
fprintf('\n %.0f final loci count \n\n',size(AMX,1))
fprintf('\n %.0f final loci count \n\n',size(AMX,1))


clearvars -except ADSP LOCI CASE CTRL PHEN PHE PHECASE PHECTRL...
clearvars -except AD LOCI CASE CTRL PHEN PHE PHECASE PHECTRL...
AMX AMXCASE AMXCTRL  
AMX AMXCASE AMXCTRL  


Line 217: Line 211:
[ADNN, caMX, coMX] = varmx(AMX,AMXCASE,AMXCTRL,PHE);
[ADNN, caMX, coMX] = varmx(AMX,AMXCASE,AMXCTRL,PHE);


clearvars -except ADSP LOCI CASE CTRL PHEN PHE PHECASE PHECTRL...
clearvars -except AD LOCI CASE CTRL PHEN PHE PHECASE PHECTRL...
AMX AMXCASE AMXCTRL ADNN  
AMX AMXCASE AMXCTRL ADNN  


Line 248: Line 242:




clearvars -except ADSP LOCI CASE CTRL PHEN PHE PHECASE PHECTRL...
clearvars -except AD LOCI CASE CTRL PHEN PHE PHECASE PHECTRL...
AMX AMXCASE AMXCTRL ADNN PCAMX   
AMX AMXCASE AMXCTRL ADNN PCAMX   


Line 269: Line 263:
% tSN = tsne(PCAC(:,1:10),'NumDimensions',2,'Theta',.6,'NumPCAComponents',0);
% tSN = tsne(PCAC(:,1:10),'NumDimensions',2,'Theta',.6,'NumPCAComponents',0);
%  
%  
% clearvars -except ADSP GENB LOCI CASE CTRL PHEN AMX AMXCASE AMXCTRL...
% clearvars -except AD GENB LOCI CASE CTRL PHEN AMX AMXCASE AMXCTRL...
% PHE ADNN PCAMX tSN PCAC PCAS
% PHE ADNN PCAMX tSN PCAC PCAS


Line 287: Line 281:


disp('done')
disp('done')
clearvars -except ADSP GENB LOCI CASE CTRL PHEN AMX AMXCASE AMXCTRL...
clearvars -except AD GENB LOCI CASE CTRL PHEN AMX AMXCASE AMXCTRL...
PHE ADNN PCAMX tSN PCAC PCAS
PHE ADNN PCAMX tSN PCAC PCAS
</syntaxhighlight>
</syntaxhighlight>
Line 317: Line 311:
axis off
axis off
</syntaxhighlight>
</syntaxhighlight>
[[File: TSNE Case Control.png|600px]]
 
[[File: TSNE Case Control 2kvars.png|600px]]
<big>Top 100 variants</big>
[[File: TSNE Case Control.png|800px]]
 
<big>Top 2000 variants</big>
[[File: TSNE Case Control 2kvars.png|800px]]




Line 340: Line 338:
axis off
axis off
</syntaxhighlight>
</syntaxhighlight>
[[File: TSNE Study Cohort.png|600px]]
 
[[File: TSNE Study Cohort 2kvars.png|600px]]
<big>Top 100 variants</big>
[[File: TSNE Study Cohort.png|800px]]
 
<big>Top 2000 variants</big>
[[File: TSNE Study Cohort 2kvars.png|800px]]




Line 360: Line 362:
axis off
axis off
</syntaxhighlight>
</syntaxhighlight>
[[File: TSNE Sex.png|600px]]
 
[[File: TSNE Sex 2kvars.png|600px]]
<big>Top 100 variants</big>
[[File: TSNE Sex.png|800px]]
 
<big>Top 2000 variants</big>
[[File: TSNE Sex 2kvars.png|800px]]




Line 392: Line 398:
axis off
axis off
</syntaxhighlight>
</syntaxhighlight>
[[File: TSNE Age.png|600px]]
 
[[File: TSNE Age 2kvars.png|600px]]
<big>Top 100 variants</big>
[[File: TSNE Age.png|800px]]
 
<big>Top 2000 variants</big>
[[File: TSNE Age 2kvars.png|800px]]




Line 422: Line 432:
axis off
axis off
</syntaxhighlight>
</syntaxhighlight>
[[File: TSNE APOE.png|600px]]
 
[[File: TSNE APOE 2kvars.png|600px]]
<big>Top 100 variants</big>
[[File: TSNE APOE.png|800px]]
 
<big>Top 2000 variants</big>
[[File: TSNE APOE 2kvars.png|800px]]




Line 444: Line 458:
axis off
axis off
</syntaxhighlight>
</syntaxhighlight>
[[File: TSNE Consent 2kvars.png|600px]]
 
<big>Top 2000 variants</big>
[[File: TSNE Consent 2kvars.png|800px]]




Line 474: Line 490:


<br> <br> <br> <br> <br> <br> <br>
<br> <br> <br> <br> <br> <br> <br>
==Additional Genomics Analyses==
==Additional Genomics Analyses==
----
----
<br><br>
<br><br>
{{SmallBox|float=left|clear=none|margin=0px 0px 8px 18px|width=50%|font-size=18px|Other Analyses|txt-size=14px|
{{SmallBox|float=left|clear=none|margin=0px 0px 8px 18px|width=50%|font-size=18px|Other Analyses|txt-size=14px|
1. [[ADSP|Intro]]<br>
1. [[AD|Intro]]<br>
4. [[ADSP Neural Nets|More Neural Nets]]<br>
4. [[AD Neural Nets|More Neural Nets]]<br>
2. [[ADSP PCA|PCA]]<br>
2. [[AD PCA|PCA]]<br>
3. [[ADSP t-SNE|t-SNE]]<br>
3. [[AD t-SNE|t-SNE]]<br>
5. [[ADSP Stats|Descriptive Statistics]]<br>
5. [[AD Stats|Descriptive Statistics]]<br>
}}
}}


Line 493: Line 510:
----
----


[http://www.bradleymonk.com/Category:ADSP Category:ADSP]
[http://www.bradleymonk.com/Category:AD Category:AD]
[[Category:ADSP]]
[[Category:AD]]

Latest revision as of 16:08, 11 June 2018

t-Distributed Stochastic Neighbor Embedding (tSNE) is a technique like PCA that allows one perform dimensionality reduction for visualization purposes. Supposedly tSNE does better than PCA at revealing clusters in high-dimensional data. Whereas PCA only allows you to visualize two or three components directly against each at the same time -- tSNE uses math magic to coerce a high-dimensional dataset into either a 2D or 3D array.

Other Analyses


t-SNE models each multi-dim object against a point on a euclidean surface in such a way that similar features are modeled by nearby point functions and dissimilar features are modeled by distant point functions. It then projects these points onto the plane allowing you visualize, what would effectively be, all the interesting principal component combinations - the ones that yield unique clusters - simultaneously.




t-SNE Code




% ######################################################################
%%       tSNE : t-Distributed Stochastic Neighbor Embedding
% ######################################################################
clc; close all; clear; rng('shuffle')
cd(fileparts(which('GENOS.m')));


MATDATA = 'ADdata.mat';
which(MATDATA)
load(MATDATA)

clearvars -except AD



%% CARBON COPY MAIN VARIABLES FROM AD.STRUCT

LOCI = AD.LOCI(:,1:17);
CASE = AD.CASE;
CTRL = AD.CTRL;
PHEN = AD.PHEN;

clearvars -except AD LOCI CASE CTRL PHEN





%###############################################################
%%       DETERMINE WHICH PARTICIPANTS TO KEEP
%###############################################################



PHE = PHEN(PHEN.TOTvars>14000,:);


PHECASE = PHE(PHE.AD==1,:);
PHECTRL = PHE(PHE.AD==0,:);


clearvars -except AD LOCI CASE CTRL PHEN PHE PHECASE PHECTRL









%###############################################################
%%          COUNT NUMBER OF VARIANTS PER LOCI
%###############################################################

% The varsum() function will go through each known variant loci
% and check whether anyone's SRR ID from your subset of IDs match
% all known SRR IDs for that loci. It will then sum the total
% number of alleles (+1 for hetzy-alt, +2 for homzy-alt) for each
% loci and return the totals.


[CASEN, CTRLN] = varsum(CASE, PHECASE.SRR, CTRL, PHECTRL.SRR);


% SAVE COUNTS AS NEW TABLE COLUMNS
LOCI.CASEREFS = numel(PHECASE.SRR)*2-CASEN;
LOCI.CTRLREFS = numel(PHECTRL.SRR)*2-CTRLN;
LOCI.CASEALTS = CASEN;
LOCI.CTRLALTS = CTRLN;


clearvars -except AD LOCI CASE CTRL PHEN PHE PHECASE PHECTRL







%###############################################################
%%               COMPUTE FISHER'S P-VALUE
%###############################################################


% COMPUTE FISHERS STATISTICS FOR THE TRAINING GROUP
[FISHP, FISHOR] = fishp_mex(LOCI.CASEREFS,LOCI.CASEALTS,...
                            LOCI.CTRLREFS,LOCI.CTRLALTS);

LOCI.FISHPS  = FISHP;
LOCI.FISHORS = FISHOR;


clearvars -except AD LOCI CASE CTRL PHEN PHE PHECASE PHECTRL





%% MAKE LATEST COUNTS THE MAIN TABLE STATS

LOCI.CASEREF = LOCI.CASEREFS;
LOCI.CTRLREF = LOCI.CTRLREFS;
LOCI.CASEALT = LOCI.CASEALTS;
LOCI.CTRLALT = LOCI.CTRLALTS;
LOCI.FISHP   = LOCI.FISHPS;
LOCI.FISHOR  = LOCI.FISHORS;






%% SORT VARIANT LOCI TABLE BY FISHER P-VALUE

[X,i] = sort(LOCI.FISHP);

LOCI  = LOCI(i,:);
CASE  = CASE(i);
CTRL  = CTRL(i);
LOCI.VID = (1:size(LOCI,1))';

LOCI.GENE = string(LOCI.GENE);



clc; clearvars -except AD LOCI CASE CTRL PHEN PHE PHECASE PHECTRL
disp(LOCI(1:9,:))





%% STORE VARIABLES FOR PCA/TSNE AS 'AMX'

AMX         = LOCI;
AMXCASE     = CASE;
AMXCTRL     = CTRL;


clearvars -except AD LOCI CASE CTRL PHEN PHE PHECASE PHECTRL...
AMX AMXCASE AMXCTRL 





%% FILTER VARIANTS BASED ALT > REF

PASS = (AMX.CASEREF > AMX.CASEALT./1.5) | (AMX.CTRLREF > AMX.CTRLALT./1.5);
sum(~PASS)

AMX      = AMX(PASS,:);
AMXCASE  = AMXCASE(PASS);
AMXCTRL  = AMXCTRL(PASS);
AMX.VID  = (1:size(AMX,1))';




clearvars -except AD LOCI CASE CTRL PHEN PHE PHECASE PHECTRL...
AMX AMXCASE AMXCTRL 





%% TAKE THE TOP N NUMBER OF VARIANTS
N = 100;


AMX      = AMX(1:N,:);
AMXCASE  = AMXCASE(1:N);
AMXCTRL  = AMXCTRL(1:N);
AMX.VID  = (1:size(AMX,1))';

fprintf('\n %.0f final loci count \n\n',size(AMX,1))

clearvars -except AD LOCI CASE CTRL PHEN PHE PHECASE PHECTRL...
AMX AMXCASE AMXCTRL 








%% MAKE  RECTANGLE  NN VARIANT MATRIX


[ADNN, caMX, coMX] = varmx(AMX,AMXCASE,AMXCTRL,PHE);

clearvars -except AD LOCI CASE CTRL PHEN PHE PHECASE PHECTRL...
AMX AMXCASE AMXCTRL ADNN 









%% RANDOMIZE ADNN AND REORDER PHE TO MATCH ADNN

ADL = ADNN(1,:);
ADN = ADNN(2:end,:);
i = randperm(size(ADN,1));
ADN = ADN(i,:);
ADNN = [ADL;ADN];


[i,j] = ismember(PHE.SRR, ADN(:,1) );
PHE.USED = i;
PHE.ORDER = j;
PHE = PHE(PHE.USED,:);
PHE = sortrows(PHE,'ORDER');



PCAMX = ADNN(2:end,4:end);


clearvars -except AD LOCI CASE CTRL PHEN PHE PHECASE PHECTRL...
AMX AMXCASE AMXCTRL ADNN PCAMX  




%% (OPTIONAL) PRE-PERFORM PCA BEFORE TSNE 

% ss = statset('pca');
% ss.Display = 'iter';
% ss.MaxIter = 100;
% ss.TolFun = 1e4;
% ss.TolX = 1e4;
% ss.UseParallel = true;
% 
% [PCAC,PCAS,~,~,~] = pca(  PCAMX' , 'Options',ss);
% clc; close all; scatter(PCAC(:,1),PCAC(:,2))
%
% % ...,'NumPCAComponents',0,...  means don't use PCA
% tSN = tsne(PCAC(:,1:10),'NumDimensions',2,'Theta',.6,'NumPCAComponents',0);
% 
% clearvars -except AD GENB LOCI CASE CTRL PHEN AMX AMXCASE AMXCTRL...
% PHE ADNN PCAMX tSN PCAC PCAS






%######################################################################
%%       tSNE : t-Distributed Stochastic Neighbor Embedding
%######################################################################



tSN = tsne(PCAMX,'NumDimensions',2,'Theta',.6,'NumPCAComponents',8);


disp('done')
clearvars -except AD GENB LOCI CASE CTRL PHEN AMX AMXCASE AMXCTRL...
PHE ADNN PCAMX tSN PCAC PCAS




t-SNE Plots






ALZHEIMER'S STATUS

%% PLOT TSNE --- ALZHEIMER'S STATUS (CASE/CTRL) --------------------------
close all; 
fh1=figure('Units','normalized','Position',[.05 .05 .70 .84],'Color','w');
ax1=axes('Position',[.05 .02 .9 .9],'Color','none');

ph1 = gscatter(tSN(:,1),tSN(:,2),  PHE.AD, [],'.',15);

title({'\fontsize{16} t-SNE : CASE vs CTRL',' '})
legend(ph1,{'CTRL','CASE'},'FontSize',12,'Box','off','Location','NorthWest');
axis off

Top 100 variants Error creating thumbnail: File missing

Top 2000 variants Error creating thumbnail: File missing




STUDY COHORT

%% PLOT TSNE --- CONSORTIUM STUDY COHORT (1:24) -------------------------
close all; 
fh1=figure('Units','normalized','Position',[.05 .05 .70 .84],'Color','w');
ax1=axes('Position',[.05 .02 .9 .9],'Color','none');

ph1 = gscatter(tSN(:,1),tSN(:,2),  PHE.COHORT, [],'.',15);


title({'\fontsize{16} t-SNE : STUDY COHORT',' '})
% legend(ph1,{'CTRL','CASE'},'FontSize',12,'Box','off','Location','NorthWest');
axis off

Top 100 variants Error creating thumbnail: File missing

Top 2000 variants Error creating thumbnail: File missing



SEX

%% PLOT TSNE --- SEX (M/F) ----------------------------------------------
close all; 
fh1=figure('Units','normalized','Position',[.05 .05 .70 .84],'Color','w');
ax1=axes('Position',[.05 .02 .9 .9],'Color','none');

ph1 = gscatter(tSN(:,1),tSN(:,2),  PHE.SEX, [],'.',15);


title({'\fontsize{16} t-SNE : SEX',' '})
legend(ph1,{'Male','Female'},'FontSize',12,'Box','off','Location','NorthWest');
axis off

Top 100 variants Error creating thumbnail: File missing

Top 2000 variants Error creating thumbnail: File missing



AGE

%% PLOT TSNE --- AGE (BINNED AGE) ---------------------------------------
close all; 
fh1=figure('Units','normalized','Position',[.05 .05 .70 .84],'Color','w');
ax1=axes('Position',[.05 .02 .9 .9],'Color','none');

AGE = round(PHE.AGE);
ofAGE = AGE>60;
A = AGE(ofAGE);

histogram(AGE)

[Y,E] = discretize(A,[60 80 90 91]);
% [Y,E] = discretize(A,[60 75 85 90 91]);
for nn = 1:numel(E)
A(Y==nn) = E(nn);
end

ph1 = gscatter(tSN(ofAGE,1),tSN(ofAGE,2),  A, [],'.',15);


title({'\fontsize{16} t-SNE : AGE',' '})
% legend(ph1,{'CTRL','CASE'},'FontSize',12,'Box','off','Location','NorthWest');
axis off

Top 100 variants Error creating thumbnail: File missing

Top 2000 variants Error creating thumbnail: File missing



APOE STATUS

%% PLOT TSNE --- APOE STATUS (22,23,24,33,34,44) ------------------------
close all; 
fh1=figure('Units','normalized','Position',[.05 .05 .70 .84],'Color','w');
ax1=axes('Position',[.05 .02 .9 .9],'Color','none');


ph1 = gscatter(tSN(:,1),tSN(:,2),  PHE.APOE, [],'.',15);


ph1(1).MarkerSize = 35;
ph1(2).MarkerSize = 25;
ph1(2).Color = [.20 .20 .99];
ph1(3).MarkerSize = 35;
ph1(4).Color = [.99 .50 .10];
ph1(5).Color = [.30 .70 .80];
ph1(6).MarkerSize = 25;

title({'\fontsize{16} t-SNE : APOE',' '})
% legend(ph1,{'CTRL','CASE'},'FontSize',12,'Box','off','Location','NorthWest');
axis off

Top 100 variants Error creating thumbnail: File missing

Top 2000 variants Error creating thumbnail: File missing



CONSENT GROUP

%% PLOT TSNE --- CONSENT GROUP ------------------------------------------
close all; 
fh1=figure('Units','normalized','Position',[.05 .05 .70 .84],'Color','w');
ax1=axes('Position',[.05 .02 .9 .9],'Color','none');


ph1 = gscatter(tSN(:,1),tSN(:,2),  PHE.RD, [],'.',15);


title({'\fontsize{16} t-SNE : CONSENT GROUP',' '})
% legend(ph1,{'CTRL','CASE'},'FontSize',12,'Box','off','Location','NorthWest');
axis off

Top 2000 variants Error creating thumbnail: File missing






















Additional Genomics Analyses




Other Analyses










Notes


Category:AD