ADSP PCA: Difference between revisions
Bradley Monk (talk | contribs) No edit summary |
Bradley Monk (talk | contribs) mNo edit summary |
||
(4 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
PCA is a numerical transformation that performs dimensionality reduction, often for data visualization purposes. Like tSNE, PCA helps revealing clusters in high-dimensional data. PCA allows you to visualize two or three components directly against each at the same time. | |||
{{SmallBox|float=right|clear=none|margin=0px 0px 8px 18px|width=170px|font-size=13px|Other Analyses|txt-size=11px| | {{SmallBox|float=right|clear=none|margin=0px 0px 8px 18px|width=170px|font-size=13px|Other Analyses|txt-size=11px| | ||
Line 8: | Line 8: | ||
5. [[ADSP Stats|Descriptive Statistics]]<br> | 5. [[ADSP Stats|Descriptive Statistics]]<br> | ||
}} | }} | ||
<br> <br> <br> | <br> <br> <br> | ||
== | ==PCA Code== | ||
---- | ---- | ||
<br><br> | <br><br> | ||
Line 21: | Line 17: | ||
<syntaxhighlight lang="matlab" line start="1" highlight="1" enclose="div"> | <syntaxhighlight lang="matlab" line start="1" highlight="1" enclose="div"> | ||
% ###################################################################### | % ###################################################################### | ||
%% | %% PRINCIPAL COMPONENTS ANALYSIS | ||
% ###################################################################### | % ###################################################################### | ||
clc; close all; clear; rng('shuffle') | clc; close all; clear; rng('shuffle') | ||
cd(fileparts(which('GENOS.m'))); | cd(fileparts(which('GENOS.m'))); | ||
Line 62: | Line 60: | ||
clearvars -except ADSP LOCI CASE CTRL PHEN PHE PHECASE PHECTRL | clearvars -except ADSP LOCI CASE CTRL PHEN PHE PHECASE PHECTRL | ||
Line 188: | Line 180: | ||
%% TAKE THE TOP N NUMBER OF VARIANTS | %% TAKE THE TOP N NUMBER OF VARIANTS | ||
N = | N = 50; | ||
Line 248: | Line 240: | ||
%###################################################################### | |||
%% PCA : PRINCIPAL COMPONENTS ANALYSIS | |||
%###################################################################### | |||
ss = statset('pca') | |||
ss.Display = 'iter'; | |||
ss.MaxIter = 100; | |||
ss.TolFun = 1e4; | |||
ss.TolX = 1e4; | |||
ss.UseParallel = true; | |||
% 'NumComponents',5, 'Algorithm','eig', Elapsed time is 70.459438 seconds. | |||
% [PCAC,PCAS,PCAlatent,PCAtsquared,PCAE] = pca( PCAMX' ,'Options',ss); | |||
% | % PCAMX(PCAMX>0) = 1; | ||
[PCAC,PCAS,~,~,PCAE] = pca( PCAMX' , 'Options',ss); | |||
clearvars -except ADSP LOCI CASE CTRL PHEN PHE PHECASE PHECTRL... | |||
AMX AMXCASE AMXCTRL ADNN PCAMX PCAC PCAS PCAE | |||
%% RECONSTRUCT ORIGINAL DATA (OPTIONAL TEST) | |||
% MEAN DEVIATE (CENTER) DATA | |||
mu = mean(PCAMX); | |||
Xi = bsxfun(@minus,PCAMX,mu); | |||
% Reconstruct the centered data | |||
Xj = PCAS*PCAC'; | |||
% Reconstruct original data | |||
PCAMX_REDUX = round(Xj' + mu); | |||
clearvars -except ADSP LOCI CASE CTRL PHEN PHE PHECASE PHECTRL... | |||
clearvars -except ADSP | AMX AMXCASE AMXCTRL ADNN PCAMX PCAC PCAS PCAE PCAMX_REDUX | ||
</syntaxhighlight> | </syntaxhighlight> | ||
Line 292: | Line 296: | ||
== | ==PCA Plots== | ||
---- | ---- | ||
<br><br> | <br><br> | ||
====ALL PCs in 1D==== | |||
<syntaxhighlight lang="matlab" line start="1" highlight="1" enclose="div"> | |||
%% PLOT PCA --- ALL PCs IN 1D ------------------------------------- | |||
clc; close all; | |||
fh1=figure('Units','normalized','OuterPosition',[.02 .06 .9 .8],'Color','w'); | |||
hax1 = axes('Position',[.08 .08 .40 .80],'Color','none'); | |||
hax2 = axes('Position',[.56 .08 .40 .80],'Color','none'); | |||
Tx = PHE.COHORTNUM; | |||
Tn = unique(Tx); | |||
Ts = 'Cohort'; | |||
% axes(hax1); colormap(hax1, (prism(max(Tn))) ); | |||
axes(hax1); colormap(hax1, flipud(jet(max(Tn))) ); | |||
ph1 = scatter( (1:numel(PCAC(:,1))).*0+1 , PCAC(:,1),50, Tx,'o'); | |||
hold on | |||
ph2 = scatter( (1:numel(PCAC(:,2))).*0+2 , PCAC(:,2),50, Tx,'o'); | |||
hold on | |||
ph3 = scatter( (1:numel(PCAC(:,3))).*0+3 , PCAC(:,3),900, Tx,'.'); | |||
hold on | |||
ph4 = scatter( (1:numel(PCAC(:,4))).*0+4 , PCAC(:,4),900, Tx,'.'); | |||
hold on | |||
ph5 = scatter( (1:numel(PCAC(:,5))).*0+5 , PCAC(:,5),900, Tx,'.'); | |||
hax1.XLim = [0 6]; | |||
text(1,max(ph1.YData),sprintf(['explains: \n ' num2str(round(PCAE(1),2)) '%% \n']),... | |||
'Interpreter','tex','HorizontalAlignment','center','VerticalAlignment','bottom','FontSize',14); | |||
text(2,max(ph2.YData),sprintf(['explains: \n ' num2str(round(PCAE(2),2)) '%% \n']),... | |||
'Interpreter','tex','HorizontalAlignment','center','VerticalAlignment','bottom','FontSize',14); | |||
text(3,max(ph3.YData),sprintf(['explains: \n ' num2str(round(PCAE(3),2)) '%% \n']),... | |||
'Interpreter','tex','HorizontalAlignment','center','VerticalAlignment','bottom','FontSize',14); | |||
text(4,max(ph4.YData),sprintf(['explains: \n ' num2str(round(PCAE(4),2)) '%% \n']),... | |||
'Interpreter','tex','HorizontalAlignment','center','VerticalAlignment','bottom','FontSize',14); | |||
text(5,max(ph5.YData),sprintf(['explains: \n ' num2str(round(PCAE(5),2)) '%% \n']),... | |||
'Interpreter','tex','HorizontalAlignment','center','VerticalAlignment','bottom','FontSize',14); | |||
xlabel('\bf PCA1 - PCA5');ylabel('\bf Eigenvector Coefficients'); | |||
cb=colorbar('Ticks',unique(Tx),'TickLabels',(unique(Tx)),'Direction','reverse'); | |||
cb.Label.String = Ts; cb.Label.FontSize = 18; cb.Label.Rotation = -90; | |||
cb.Label.VerticalAlignment = 'baseline'; | |||
ph1 = | axes(hax2); colormap(hax2, (prism(max(Tn))) ); | ||
ph1 = scatter( (1:numel(PCAC(:,1))).*0+1 , PCAC(:,1),50, Tx,'o','MarkerEdgeAlpha',.02); | |||
hold on | |||
ph2 = scatter( (1:numel(PCAC(:,2))).*0+2 , PCAC(:,2),50, Tx,'o','MarkerEdgeAlpha',.02); | |||
hold on | |||
ph3 = scatter( (1:numel(PCAC(:,3))).*0+3 , PCAC(:,3),50, Tx,'o','MarkerEdgeAlpha',.02); | |||
hold on | |||
ph4 = scatter( (1:numel(PCAC(:,4))).*0+4 , PCAC(:,4),50, Tx,'o','MarkerEdgeAlpha',.02); | |||
hold on | |||
ph5 = scatter( (1:numel(PCAC(:,5))).*0+5 , PCAC(:,5),50, Tx,'o','MarkerEdgeAlpha',.02); | |||
hax2.XLim = [0 6]; | |||
</syntaxhighlight> | </syntaxhighlight> | ||
<big>Top | <big>Top 50 variants</big> | ||
[[File: | [[File: PCA 1D 50vars.png|800px]] | ||
<big>Top 2000 variants</big> | <big>Top 2000 variants</big> | ||
[[File: | [[File: PCA 1D 2000vars.png|800px]] | ||
Line 326: | Line 386: | ||
==== | ====ALZHEIMER'S STATUS==== | ||
<syntaxhighlight lang="matlab" line start="1" highlight="1" enclose="div"> | <syntaxhighlight lang="matlab" line start="1" highlight="1" enclose="div"> | ||
%% PLOT | %% PLOT PCA --- CASE-vs-CTRL ------------------------------------------ | ||
close all; | clc; close all; | ||
fh1=figure('Units','normalized','Position',[.05 . | fh1=figure('Units','normalized','OuterPosition',[.02 .06 .97 .8],'Color','w'); | ||
hax1 = axes('Position',[.05 .07 .40 .85],'Color','none'); | |||
hax2 = axes('Position',[.52 .07 .40 .85],'Color','none'); | |||
Tx = PHE.AD; | |||
Tn = unique(Tx); | |||
Ts = 'CASE-vs-CTRL'; | |||
axes(hax1); colormap(hax1, (lines(max(Tn)+1)) ); | |||
ph1 = scatter(PCAC(:,1), PCAC(:,2),500, Tx,'.'); | |||
xlabel('\bf PCA1');ylabel('\bf PCA2'); | |||
cb=colorbar('Ticks',Tn,'TickLabels',Tn,'Direction','reverse'); | |||
cb.Label.String = Ts; cb.Label.FontSize = 14; cb.Label.Rotation = -90; | |||
cb.Label.VerticalAlignment = 'baseline'; | |||
axes(hax2); colormap(hax2, (lines(max(Tn)+1)) ); | |||
ph2 = scatter3(PCAC(:,1), PCAC(:,2), PCAC(:,3),500, Tx,'.'); | |||
xlabel('\bf PCA1');ylabel('\bf PCA2');zlabel('\bf PCA3'); | |||
view([65,20]) | |||
</syntaxhighlight> | </syntaxhighlight> | ||
<big>Top | <big>Top 50 variants</big> | ||
[[File: | [[File: PCA 2D 3D CASE CTRL 50vars.png|800px]] | ||
<big>Top 2000 variants</big> | <big>Top 2000 variants</big> | ||
[[File: | [[File: PCA 2D 3D CASE CTRL 2000vars.png|800px]] | ||
==== | |||
====STUDY COHORT==== | |||
<syntaxhighlight lang="matlab" line start="1" highlight="1" enclose="div"> | <syntaxhighlight lang="matlab" line start="1" highlight="1" enclose="div"> | ||
%% PLOT | %% PLOT PCA --- COHORT ------------------------------------------ | ||
close all; | clc; close all; | ||
fh1=figure('Units','normalized','Position',[.05 . | fh1=figure('Units','normalized','OuterPosition',[.02 .06 .97 .8],'Color','w'); | ||
hax1 = axes('Position',[.05 .07 .40 .85],'Color','none'); | |||
hax2 = axes('Position',[.52 .07 .40 .85],'Color','none'); | |||
Tx = PHE.COHORTNUM; | |||
Tn = unique(Tx); | |||
Ts = 'Cohort'; | |||
axes(hax1); colormap(hax1, flipud(jet(max(Tn))) ); | |||
ph1 = scatter(PCAC(:,1), PCAC(:,2),500, Tx,'.'); | |||
xlabel('\bf PCA1');ylabel('\bf PCA2'); | |||
cb=colorbar('Ticks',Tn,'TickLabels',Tn,'Direction','reverse'); | |||
cb.Label.String = Ts; cb.Label.FontSize = 14; cb.Label.Rotation = -90; | |||
cb.Label.VerticalAlignment = 'baseline'; | |||
axes(hax2); colormap(hax2, flipud(jet(max(Tn))) ); | |||
ph2 = scatter3(PCAC(:,1), PCAC(:,2), PCAC(:,3),500, Tx,'.'); | |||
xlabel('\bf PCA1');ylabel('\bf PCA2');zlabel('\bf PCA3'); | |||
view([65,20]) | |||
</syntaxhighlight> | |||
<big>Top 50 variants</big> | |||
[[File: PCA 2D 3D Cohort 50vars.png|800px]] | |||
<big>Top 2000 variants</big> | |||
[[File: PCA 2D 3D Cohort 2000vars.png|800px]] | |||
====AGE==== | ====AGE==== | ||
<syntaxhighlight lang="matlab" line start="1" highlight="1" enclose="div"> | <syntaxhighlight lang="matlab" line start="1" highlight="1" enclose="div"> | ||
%% PLOT | %% PLOT PCA --- AGE ------------------------------------------ | ||
close all; | clc; close all; | ||
fh1=figure('Units','normalized','Position',[.05 . | fh1=figure('Units','normalized','OuterPosition',[.02 .06 .97 .8],'Color','w'); | ||
hax1 = axes('Position',[.05 .07 .40 .85],'Color','none'); | |||
hax2 = axes('Position',[.52 .07 .40 .85],'Color','none'); | |||
AGE = round(PHE.AGE); | AGE = round(PHE.AGE); | ||
[Y,E] = discretize(AGE,8); | |||
for nn = 1:numel(E) | |||
AGE(Y==nn) = E(nn); | |||
end | |||
Tx = AGE(AGE>60); | |||
Tn = unique(Tx); | |||
Ts = 'AGE-STATUS'; | |||
PCAage = PCAC(AGE>60,:); | |||
% | |||
axes(hax1); colormap(hax1, (jet(numel(Tn))) ); | |||
% axes(hax1); colormap(hax1, flipud(jet(max(Tn))) ); | |||
ph1 = scatter(PCAage(:,1), PCAage(:,2),500, Tx,'.'); | |||
xlabel('\bf PCA1');ylabel('\bf PCA2'); | |||
cb=colorbar('Ticks',Tn,'TickLabels',Tn,'Direction','reverse'); | |||
cb.Label.String = Ts; cb.Label.FontSize = 14; cb.Label.Rotation = -90; | |||
cb.Label.VerticalAlignment = 'baseline'; | |||
axes(hax2); colormap(hax2, (jet(numel(Tn))) ); | |||
% | % axes(hax2); colormap(hax2, flipud(jet(max(Tn))) ); | ||
ph2 = scatter3(PCAage(:,1), PCAage(:,2), PCAage(:,3),500, Tx,'.'); | |||
xlabel('\bf PCA1');ylabel('\bf PCA2');zlabel('\bf PCA3'); | |||
view([65,20]) | |||
</syntaxhighlight> | </syntaxhighlight> | ||
<big>Top | <big>Top 50 variants</big> | ||
[[File: | [[File: PCA 2D 3D AGE 50vars.png|800px]] | ||
<big>Top 2000 variants</big> | <big>Top 2000 variants</big> | ||
[[File: | [[File: PCA 2D 3D AGE 2000vars.png|800px]] | ||
Line 413: | Line 512: | ||
====APOE STATUS==== | ====APOE STATUS==== | ||
<syntaxhighlight lang="matlab" line start="1" highlight="1" enclose="div"> | <syntaxhighlight lang="matlab" line start="1" highlight="1" enclose="div"> | ||
%% PLOT | %% PLOT PCA --- APOE-STATUS ------------------------------------------ | ||
close all; | clc; close all; | ||
fh1=figure('Units','normalized','Position',[.05 . | fh1=figure('Units','normalized','OuterPosition',[.02 .06 .97 .8],'Color','w'); | ||
hax1 = axes('Position',[.05 .07 .40 .85],'Color','none'); | |||
hax2 = axes('Position',[.52 .07 .40 .85],'Color','none'); | |||
APOE = unique(PHE.APOE); | |||
PHE.APOEID = PHE.SEX .* 0; | |||
for nn = 1:numel(APOE) | |||
PHE.APOEID(PHE.APOE == APOE(nn)) = nn; | |||
end | |||
Tx = PHE.APOEID; | |||
Tn = unique(Tx); | |||
Ts = 'APOE-STATUS'; | |||
axes(hax1); colormap(hax1, (lines(numel(Tn))) ); | |||
% axes(hax1); colormap(hax1, flipud(jet(max(Tn))) ); | |||
ph1 = scatter(PCAC(:,1), PCAC(:,2),500, Tx,'.'); | |||
xlabel('\bf PCA1');ylabel('\bf PCA2'); | |||
cb=colorbar('Ticks',Tn,'TickLabels',APOE,'Direction','reverse'); | |||
cb.Label.String = Ts; cb.Label.FontSize = 14; cb.Label.Rotation = -90; | |||
cb.Label.VerticalAlignment = 'baseline'; | |||
axes(hax2); colormap(hax2, (lines(numel(Tn))) ); | |||
% axes(hax2); colormap(hax2, flipud(jet(max(Tn))) ); | |||
ph2 = scatter3(PCAC(:,1), PCAC(:,2), PCAC(:,3),500, Tx,'.'); | |||
xlabel('\bf PCA1');ylabel('\bf PCA2');zlabel('\bf PCA3'); | |||
view([65,20]) | |||
</syntaxhighlight> | |||
<big>Top 50 variants</big> | |||
[[File: PCA 2D 3D APOE 50vars.png|800px]] | |||
<big>Top 2000 variants</big> | |||
[[File: PCA 2D 3D APOE 2000vars.png|800px]] | |||
< | |||
Latest revision as of 17:53, 11 June 2018
PCA is a numerical transformation that performs dimensionality reduction, often for data visualization purposes. Like tSNE, PCA helps revealing clusters in high-dimensional data. PCA allows you to visualize two or three components directly against each at the same time.
PCA Code
% ######################################################################
%% PRINCIPAL COMPONENTS ANALYSIS
% ######################################################################
clc; close all; clear; rng('shuffle')
cd(fileparts(which('GENOS.m')));
MATDATA = 'ADSPdata.mat';
which(MATDATA)
load(MATDATA)
clearvars -except ADSP
%% CARBON COPY MAIN VARIABLES FROM ADSP.STRUCT
LOCI = ADSP.LOCI(:,1:17);
CASE = ADSP.CASE;
CTRL = ADSP.CTRL;
PHEN = ADSP.PHEN;
clearvars -except ADSP LOCI CASE CTRL PHEN
%###############################################################
%% DETERMINE WHICH PARTICIPANTS TO KEEP
%###############################################################
PHE = PHEN(PHEN.TOTvars>14000,:);
PHECASE = PHE(PHE.AD==1,:);
PHECTRL = PHE(PHE.AD==0,:);
clearvars -except ADSP LOCI CASE CTRL PHEN PHE PHECASE PHECTRL
%###############################################################
%% COUNT NUMBER OF VARIANTS PER LOCI
%###############################################################
% The varsum() function will go through each known variant loci
% and check whether anyone's SRR ID from your subset of IDs match
% all known SRR IDs for that loci. It will then sum the total
% number of alleles (+1 for hetzy-alt, +2 for homzy-alt) for each
% loci and return the totals.
[CASEN, CTRLN] = varsum(CASE, PHECASE.SRR, CTRL, PHECTRL.SRR);
% SAVE COUNTS AS NEW TABLE COLUMNS
LOCI.CASEREFS = numel(PHECASE.SRR)*2-CASEN;
LOCI.CTRLREFS = numel(PHECTRL.SRR)*2-CTRLN;
LOCI.CASEALTS = CASEN;
LOCI.CTRLALTS = CTRLN;
clearvars -except ADSP LOCI CASE CTRL PHEN PHE PHECASE PHECTRL
%###############################################################
%% COMPUTE FISHER'S P-VALUE
%###############################################################
% COMPUTE FISHERS STATISTICS FOR THE TRAINING GROUP
[FISHP, FISHOR] = fishp_mex(LOCI.CASEREFS,LOCI.CASEALTS,...
LOCI.CTRLREFS,LOCI.CTRLALTS);
LOCI.FISHPS = FISHP;
LOCI.FISHORS = FISHOR;
clearvars -except ADSP LOCI CASE CTRL PHEN PHE PHECASE PHECTRL
%% MAKE LATEST COUNTS THE MAIN TABLE STATS
LOCI.CASEREF = LOCI.CASEREFS;
LOCI.CTRLREF = LOCI.CTRLREFS;
LOCI.CASEALT = LOCI.CASEALTS;
LOCI.CTRLALT = LOCI.CTRLALTS;
LOCI.FISHP = LOCI.FISHPS;
LOCI.FISHOR = LOCI.FISHORS;
%% SORT VARIANT LOCI TABLE BY FISHER P-VALUE
[X,i] = sort(LOCI.FISHP);
LOCI = LOCI(i,:);
CASE = CASE(i);
CTRL = CTRL(i);
LOCI.VID = (1:size(LOCI,1))';
LOCI.GENE = string(LOCI.GENE);
clc; clearvars -except ADSP LOCI CASE CTRL PHEN PHE PHECASE PHECTRL
disp(LOCI(1:9,:))
%% STORE VARIABLES FOR PCA/TSNE AS 'AMX'
AMX = LOCI;
AMXCASE = CASE;
AMXCTRL = CTRL;
clearvars -except ADSP LOCI CASE CTRL PHEN PHE PHECASE PHECTRL...
AMX AMXCASE AMXCTRL
%% FILTER VARIANTS BASED ALT > REF
PASS = (AMX.CASEREF > AMX.CASEALT./1.5) | (AMX.CTRLREF > AMX.CTRLALT./1.5);
sum(~PASS)
AMX = AMX(PASS,:);
AMXCASE = AMXCASE(PASS);
AMXCTRL = AMXCTRL(PASS);
AMX.VID = (1:size(AMX,1))';
clearvars -except ADSP LOCI CASE CTRL PHEN PHE PHECASE PHECTRL...
AMX AMXCASE AMXCTRL
%% TAKE THE TOP N NUMBER OF VARIANTS
N = 50;
AMX = AMX(1:N,:);
AMXCASE = AMXCASE(1:N);
AMXCTRL = AMXCTRL(1:N);
AMX.VID = (1:size(AMX,1))';
fprintf('\n %.0f final loci count \n\n',size(AMX,1))
clearvars -except ADSP LOCI CASE CTRL PHEN PHE PHECASE PHECTRL...
AMX AMXCASE AMXCTRL
%% MAKE RECTANGLE NN VARIANT MATRIX
[ADNN, caMX, coMX] = varmx(AMX,AMXCASE,AMXCTRL,PHE);
clearvars -except ADSP LOCI CASE CTRL PHEN PHE PHECASE PHECTRL...
AMX AMXCASE AMXCTRL ADNN
%% RANDOMIZE ADNN AND REORDER PHE TO MATCH ADNN
ADL = ADNN(1,:);
ADN = ADNN(2:end,:);
i = randperm(size(ADN,1));
ADN = ADN(i,:);
ADNN = [ADL;ADN];
[i,j] = ismember(PHE.SRR, ADN(:,1) );
PHE.USED = i;
PHE.ORDER = j;
PHE = PHE(PHE.USED,:);
PHE = sortrows(PHE,'ORDER');
PCAMX = ADNN(2:end,4:end);
clearvars -except ADSP LOCI CASE CTRL PHEN PHE PHECASE PHECTRL...
AMX AMXCASE AMXCTRL ADNN PCAMX
%######################################################################
%% PCA : PRINCIPAL COMPONENTS ANALYSIS
%######################################################################
ss = statset('pca')
ss.Display = 'iter';
ss.MaxIter = 100;
ss.TolFun = 1e4;
ss.TolX = 1e4;
ss.UseParallel = true;
% 'NumComponents',5, 'Algorithm','eig', Elapsed time is 70.459438 seconds.
% [PCAC,PCAS,PCAlatent,PCAtsquared,PCAE] = pca( PCAMX' ,'Options',ss);
% PCAMX(PCAMX>0) = 1;
[PCAC,PCAS,~,~,PCAE] = pca( PCAMX' , 'Options',ss);
clearvars -except ADSP LOCI CASE CTRL PHEN PHE PHECASE PHECTRL...
AMX AMXCASE AMXCTRL ADNN PCAMX PCAC PCAS PCAE
%% RECONSTRUCT ORIGINAL DATA (OPTIONAL TEST)
% MEAN DEVIATE (CENTER) DATA
mu = mean(PCAMX);
Xi = bsxfun(@minus,PCAMX,mu);
% Reconstruct the centered data
Xj = PCAS*PCAC';
% Reconstruct original data
PCAMX_REDUX = round(Xj' + mu);
clearvars -except ADSP LOCI CASE CTRL PHEN PHE PHECASE PHECTRL...
AMX AMXCASE AMXCTRL ADNN PCAMX PCAC PCAS PCAE PCAMX_REDUX
PCA Plots
ALL PCs in 1D
%% PLOT PCA --- ALL PCs IN 1D -------------------------------------
clc; close all;
fh1=figure('Units','normalized','OuterPosition',[.02 .06 .9 .8],'Color','w');
hax1 = axes('Position',[.08 .08 .40 .80],'Color','none');
hax2 = axes('Position',[.56 .08 .40 .80],'Color','none');
Tx = PHE.COHORTNUM;
Tn = unique(Tx);
Ts = 'Cohort';
% axes(hax1); colormap(hax1, (prism(max(Tn))) );
axes(hax1); colormap(hax1, flipud(jet(max(Tn))) );
ph1 = scatter( (1:numel(PCAC(:,1))).*0+1 , PCAC(:,1),50, Tx,'o');
hold on
ph2 = scatter( (1:numel(PCAC(:,2))).*0+2 , PCAC(:,2),50, Tx,'o');
hold on
ph3 = scatter( (1:numel(PCAC(:,3))).*0+3 , PCAC(:,3),900, Tx,'.');
hold on
ph4 = scatter( (1:numel(PCAC(:,4))).*0+4 , PCAC(:,4),900, Tx,'.');
hold on
ph5 = scatter( (1:numel(PCAC(:,5))).*0+5 , PCAC(:,5),900, Tx,'.');
hax1.XLim = [0 6];
text(1,max(ph1.YData),sprintf(['explains: \n ' num2str(round(PCAE(1),2)) '%% \n']),...
'Interpreter','tex','HorizontalAlignment','center','VerticalAlignment','bottom','FontSize',14);
text(2,max(ph2.YData),sprintf(['explains: \n ' num2str(round(PCAE(2),2)) '%% \n']),...
'Interpreter','tex','HorizontalAlignment','center','VerticalAlignment','bottom','FontSize',14);
text(3,max(ph3.YData),sprintf(['explains: \n ' num2str(round(PCAE(3),2)) '%% \n']),...
'Interpreter','tex','HorizontalAlignment','center','VerticalAlignment','bottom','FontSize',14);
text(4,max(ph4.YData),sprintf(['explains: \n ' num2str(round(PCAE(4),2)) '%% \n']),...
'Interpreter','tex','HorizontalAlignment','center','VerticalAlignment','bottom','FontSize',14);
text(5,max(ph5.YData),sprintf(['explains: \n ' num2str(round(PCAE(5),2)) '%% \n']),...
'Interpreter','tex','HorizontalAlignment','center','VerticalAlignment','bottom','FontSize',14);
xlabel('\bf PCA1 - PCA5');ylabel('\bf Eigenvector Coefficients');
cb=colorbar('Ticks',unique(Tx),'TickLabels',(unique(Tx)),'Direction','reverse');
cb.Label.String = Ts; cb.Label.FontSize = 18; cb.Label.Rotation = -90;
cb.Label.VerticalAlignment = 'baseline';
axes(hax2); colormap(hax2, (prism(max(Tn))) );
ph1 = scatter( (1:numel(PCAC(:,1))).*0+1 , PCAC(:,1),50, Tx,'o','MarkerEdgeAlpha',.02);
hold on
ph2 = scatter( (1:numel(PCAC(:,2))).*0+2 , PCAC(:,2),50, Tx,'o','MarkerEdgeAlpha',.02);
hold on
ph3 = scatter( (1:numel(PCAC(:,3))).*0+3 , PCAC(:,3),50, Tx,'o','MarkerEdgeAlpha',.02);
hold on
ph4 = scatter( (1:numel(PCAC(:,4))).*0+4 , PCAC(:,4),50, Tx,'o','MarkerEdgeAlpha',.02);
hold on
ph5 = scatter( (1:numel(PCAC(:,5))).*0+5 , PCAC(:,5),50, Tx,'o','MarkerEdgeAlpha',.02);
hax2.XLim = [0 6];
Top 50 variants Error creating thumbnail: File missing
Top 2000 variants Error creating thumbnail: File missing
ALZHEIMER'S STATUS
%% PLOT PCA --- CASE-vs-CTRL ------------------------------------------
clc; close all;
fh1=figure('Units','normalized','OuterPosition',[.02 .06 .97 .8],'Color','w');
hax1 = axes('Position',[.05 .07 .40 .85],'Color','none');
hax2 = axes('Position',[.52 .07 .40 .85],'Color','none');
Tx = PHE.AD;
Tn = unique(Tx);
Ts = 'CASE-vs-CTRL';
axes(hax1); colormap(hax1, (lines(max(Tn)+1)) );
ph1 = scatter(PCAC(:,1), PCAC(:,2),500, Tx,'.');
xlabel('\bf PCA1');ylabel('\bf PCA2');
cb=colorbar('Ticks',Tn,'TickLabels',Tn,'Direction','reverse');
cb.Label.String = Ts; cb.Label.FontSize = 14; cb.Label.Rotation = -90;
cb.Label.VerticalAlignment = 'baseline';
axes(hax2); colormap(hax2, (lines(max(Tn)+1)) );
ph2 = scatter3(PCAC(:,1), PCAC(:,2), PCAC(:,3),500, Tx,'.');
xlabel('\bf PCA1');ylabel('\bf PCA2');zlabel('\bf PCA3');
view([65,20])
Top 50 variants Error creating thumbnail: File missing
Top 2000 variants Error creating thumbnail: File missing
STUDY COHORT
%% PLOT PCA --- COHORT ------------------------------------------
clc; close all;
fh1=figure('Units','normalized','OuterPosition',[.02 .06 .97 .8],'Color','w');
hax1 = axes('Position',[.05 .07 .40 .85],'Color','none');
hax2 = axes('Position',[.52 .07 .40 .85],'Color','none');
Tx = PHE.COHORTNUM;
Tn = unique(Tx);
Ts = 'Cohort';
axes(hax1); colormap(hax1, flipud(jet(max(Tn))) );
ph1 = scatter(PCAC(:,1), PCAC(:,2),500, Tx,'.');
xlabel('\bf PCA1');ylabel('\bf PCA2');
cb=colorbar('Ticks',Tn,'TickLabels',Tn,'Direction','reverse');
cb.Label.String = Ts; cb.Label.FontSize = 14; cb.Label.Rotation = -90;
cb.Label.VerticalAlignment = 'baseline';
axes(hax2); colormap(hax2, flipud(jet(max(Tn))) );
ph2 = scatter3(PCAC(:,1), PCAC(:,2), PCAC(:,3),500, Tx,'.');
xlabel('\bf PCA1');ylabel('\bf PCA2');zlabel('\bf PCA3');
view([65,20])
Top 50 variants Error creating thumbnail: File missing
Top 2000 variants Error creating thumbnail: File missing
AGE
%% PLOT PCA --- AGE ------------------------------------------
clc; close all;
fh1=figure('Units','normalized','OuterPosition',[.02 .06 .97 .8],'Color','w');
hax1 = axes('Position',[.05 .07 .40 .85],'Color','none');
hax2 = axes('Position',[.52 .07 .40 .85],'Color','none');
AGE = round(PHE.AGE);
[Y,E] = discretize(AGE,8);
for nn = 1:numel(E)
AGE(Y==nn) = E(nn);
end
Tx = AGE(AGE>60);
Tn = unique(Tx);
Ts = 'AGE-STATUS';
PCAage = PCAC(AGE>60,:);
axes(hax1); colormap(hax1, (jet(numel(Tn))) );
% axes(hax1); colormap(hax1, flipud(jet(max(Tn))) );
ph1 = scatter(PCAage(:,1), PCAage(:,2),500, Tx,'.');
xlabel('\bf PCA1');ylabel('\bf PCA2');
cb=colorbar('Ticks',Tn,'TickLabels',Tn,'Direction','reverse');
cb.Label.String = Ts; cb.Label.FontSize = 14; cb.Label.Rotation = -90;
cb.Label.VerticalAlignment = 'baseline';
axes(hax2); colormap(hax2, (jet(numel(Tn))) );
% axes(hax2); colormap(hax2, flipud(jet(max(Tn))) );
ph2 = scatter3(PCAage(:,1), PCAage(:,2), PCAage(:,3),500, Tx,'.');
xlabel('\bf PCA1');ylabel('\bf PCA2');zlabel('\bf PCA3');
view([65,20])
Top 50 variants Error creating thumbnail: File missing
Top 2000 variants Error creating thumbnail: File missing
APOE STATUS
%% PLOT PCA --- APOE-STATUS ------------------------------------------
clc; close all;
fh1=figure('Units','normalized','OuterPosition',[.02 .06 .97 .8],'Color','w');
hax1 = axes('Position',[.05 .07 .40 .85],'Color','none');
hax2 = axes('Position',[.52 .07 .40 .85],'Color','none');
APOE = unique(PHE.APOE);
PHE.APOEID = PHE.SEX .* 0;
for nn = 1:numel(APOE)
PHE.APOEID(PHE.APOE == APOE(nn)) = nn;
end
Tx = PHE.APOEID;
Tn = unique(Tx);
Ts = 'APOE-STATUS';
axes(hax1); colormap(hax1, (lines(numel(Tn))) );
% axes(hax1); colormap(hax1, flipud(jet(max(Tn))) );
ph1 = scatter(PCAC(:,1), PCAC(:,2),500, Tx,'.');
xlabel('\bf PCA1');ylabel('\bf PCA2');
cb=colorbar('Ticks',Tn,'TickLabels',APOE,'Direction','reverse');
cb.Label.String = Ts; cb.Label.FontSize = 14; cb.Label.Rotation = -90;
cb.Label.VerticalAlignment = 'baseline';
axes(hax2); colormap(hax2, (lines(numel(Tn))) );
% axes(hax2); colormap(hax2, flipud(jet(max(Tn))) );
ph2 = scatter3(PCAC(:,1), PCAC(:,2), PCAC(:,3),500, Tx,'.');
xlabel('\bf PCA1');ylabel('\bf PCA2');zlabel('\bf PCA3');
view([65,20])
Top 50 variants Error creating thumbnail: File missing
Top 2000 variants Error creating thumbnail: File missing
Additional Genomics Analyses