Malinow: Difference between revisions
Bradley Monk (talk | contribs) No edit summary |
Bradley Monk (talk | contribs) No edit summary |
||
Line 2: | Line 2: | ||
* [[Molecular Methods]] | * [[Molecular Methods]] | ||
* [[Quantum Dots]] | * [[Quantum Dots]] | ||
:* [http://products.invitrogen.com/ivgn/product/Q11422MP Qdot 655 Goat F(ab')2 Anti-Rabbit IgG Conjugate] | |||
:* [http://www.invitrogen.com/site/us/en/home/Products-and-Services/Applications/Cell-Analysis/Labeling-Chemistry/Fluorescence-SpectraViewer.html#product=Q11422MP Qdot Color Visualizer] | |||
==Getting a Qdot into the cell== | |||
#Conjugate Qdot with secondary antibody f(ab) | |||
#Incubate tissue with primary antibodies for [[AMPAR]] and [[PSD95]] | |||
#Puff Qdots onto cell body, these will bind the primary at [[AMPAR]] N-terminus | |||
#When AMPARs internalize the Qdot will be dragged into cell | |||
#Cleave N-terminus of [[AMPAR]] to free Qdot | |||
#Qdot can then bind the primary ligated to [[PSD95]] | |||
Revision as of 15:37, 3 July 2013
Getting a Qdot into the cell
- Conjugate Qdot with secondary antibody f(ab)
- Incubate tissue with primary antibodies for AMPAR and PSD95
- Puff Qdots onto cell body, these will bind the primary at AMPAR N-terminus
- When AMPARs internalize the Qdot will be dragged into cell
- Cleave N-terminus of AMPAR to free Qdot
- Qdot can then bind the primary ligated to PSD95
Notes
- FLASH technology
- Bredt
- minisog - gfp
- Acidic basic polypeptide recognition sequences
- Talk with nanotech group about various ways to conj. Qdots
- Nichol and England - couple Qdot to AMPAR agonist
- Have simulation be a competitive model where AMPARs are competing during LTP
- Quantitative review on synaptic numbers (Sheng)
PALM STORM
There are two major groups of methods for functional super-resolution microscopy:
1. Deterministic super-resolution: The most commonly used emitters in biological microscopy, fluorophores, show a nonlinear response to excitation, and this nonlinear response can be exploited to enhance resolution. These methods include STED, GSD, RESOLFT and SSIM.
2. Stochastical super-resolution PALM STORM: The chemical complexity of many molecular light sources gives them a complex temporal behaviour, which can be used to make several close-by fluorophores emit light at separate times and thereby become resolvable in time. These methods include SOFI and all single-molecule localization methods (SMLM) such as SPDM, SPDMphymod, PALM, FPALM, STORM and dSTORM.
NRSA
- Dominant negative PSD95