; from Choquet 2010 {{Fig|[[File:ChoquetDiffusionRate1.png]]}}<br>
; from Choquet 2010 {{Fig|[[File:ChoquetDiffusionRate1.png]]}}<br>
* 0.1 - 0.2 µm<sup>2</sup>⁄s
* extrasynaptic: 0.1 µm<sup>2</sup>⁄s
* synaptic: 0.05 µm<sup>2</sup>⁄s
* linearized median diffusion rates
* synaptic after glu/gly: 0.01 µm<sup>2</sup>⁄s
* Dendrite: 0.8 µm/s
* PSD: 0.4 - 0.1 µm/s
* PSDp: 0.1 - 0.01 µm/s
}}
}}
Line 108:
Line 105:
; From [http://www.ncbi.nlm.nih.gov/pubmed/22357909 Harris KM and Weinberg 2012]
; From [http://www.ncbi.nlm.nih.gov/pubmed/22357909 Harris KM and Weinberg 2012]
* Spine morphology {{Fig|[[File:Synaptic Buton.png]]|3D reconstruction of a proximal CA3 pyramidal cell dendrite (blue) and a large mossy fiber bouton (translucent yellow). The cut-away in C2 shows synapses (red) onto multiple dendritic spines, some of which are highly branched. The bouton also forms nonsynaptic cell adhesion junctions (fuchsia).}}
* Spine morphology {{Fig|[[File:Synaptic Buton.png]]|3D reconstruction of a proximal CA3 pyramidal cell dendrite (blue) and a large mossy fiber bouton (translucent yellow). The cut-away in C2 shows synapses (red) onto multiple dendritic spines, some of which are highly branched. The bouton also forms nonsynaptic cell adhesion junctions (fuchsia).}}
Spine morphology FIG: {{#info: 3D reconstruction of a proximal CA3 pyramidal cell dendrite (blue) and a large mossy fiber bouton (translucent yellow). The cut-away in C2 shows synapses (red) onto multiple dendritic spines, some of which are highly branched. The bouton also forms nonsynaptic cell adhesion junctions (fuchsia). CLICK AWAY FROM IMAGE TO CLOSE }}
Hippocampal dendrite FIG: {{#info: {{{2}}} CLICK AWAY FROM IMAGE TO CLOSE }}
Choquet 2007 Real Time Receptor Diffusion
{{{2}}}
Choquet 2007 Real Time Receptor Diffusion Analysis
The video represents a 10µm × 10µm section scaled to a 535px × 535px video.
1µm : 53.5px
The analysis below documents one instance of Qdot diffusion, between the 6s-7s time points.
This instance was chosen because of the clarity of motion and no Qdot flicker.
The Qdot (center) moves from pixel location (X:291, Y:302) at 6.78s to (X:319, Y346) at 6.98s
That is a distance of 52.2px in 200ms
Qdot velocity: Qv ≈ 1µm ⁄ 200ms
Note this diffusion rate of 5µm/s is 10-fold higher than the median diffusion rate reported above.
An upper bound of 5µm/s means that receptors can move between synapses in fractions of a second.
Figures:
FIG: {{#info: {{{2}}} CLICK AWAY FROM IMAGE TO CLOSE }}
FIG: {{#info: {{{2}}} CLICK AWAY FROM IMAGE TO CLOSE }}
FIG: {{#info: {{{2}}} CLICK AWAY FROM IMAGE TO CLOSE }}
FIG: {{#info: {{{2}}} CLICK AWAY FROM IMAGE TO CLOSE }}
Receptor Diffusion Rate Best Estimates
GABAA: .01 - .05 µm2/s FIG: {{#info: Choquet 2010 CLICK AWAY FROM IMAGE TO CLOSE }}