Normal Distribution: Difference between revisions
Jump to navigation
Jump to search
Bradley Monk (talk | contribs) No edit summary |
Bradley Monk (talk | contribs) No edit summary |
||
Line 4: | Line 4: | ||
f(''x'') {{=}} (<sup>1</sup>⁄<sub>σ {{math|{{radical|2π}}}}</sub>) ''e''<sup>-<sup>(x-µ) ²</sup>⁄<sub>2σ ²</sub></sup> | f(''x'') {{=}} (<sup>1</sup>⁄<sub>σ {{math|{{radical|2π}}}}</sub>) ''e''<sup>-<sup>(x-µ) ²</sup>⁄<sub>2σ ²</sub></sup> | ||
</big></big> | </big></big> | ||
{{Probability distribution | |||
| name = Normal distribution | |||
| type = density | |||
| pdf_image = [[File:Normal Distribution PDF.svg|350px|Probability density function for the normal distribution]]<br /><small>The red curve is the ''standard normal distribution''</small> | |||
| cdf_image = [[File:Normal Distribution CDF.svg|350px|Cumulative distribution function for the normal distribution]] | |||
| notation = <math>\mathcal{N}(\mu,\,\sigma^2)</math> | |||
| parameters = {{nowrap|''μ'' ∈ '''R'''}} — mean ([[location parameter|location]])<br />{{nowrap|''σ''<sup>2</sup> > 0}} — variance (squared [[scale parameter|scale]]) | |||
| support = ''x'' ∈ '''R''' | |||
| pdf = <math>\frac{1}{\sigma\sqrt{2\pi}}\, e^{-\frac{(x - \mu)^2}{2 \sigma^2}}</math> | |||
| cdf = <math>\frac12\left[1 + \operatorname{erf}\left( \frac{x-\mu}{\sigma\sqrt{2}}\right)\right] </math> | |||
| quantile = <math>\mu+\sigma\sqrt{2}\,\operatorname{erf}^{-1}(2F-1)</math> | |||
| mean = {{math|''μ''}} | |||
| median = {{math|''μ''}} | |||
| mode = {{math|''μ''}} | |||
| variance = <math>\sigma^2\,</math> | |||
| skewness = 0 | |||
| kurtosis = 0 <!-- DO NOT REPLACE THIS WITH THE OLD-STYLE KURTOSIS WHICH IS 3. --> | |||
| entropy = <math>\frac12 \ln(2 \pi e \, \sigma^2)</math> | |||
| mgf = <math>\exp\{ \mu t + \frac{1}{2}\sigma^2t^2 \}</math> | |||
| char = <math>\exp \{ i\mu t - \frac{1}{2}\sigma^2 t^2 \}</math> | |||
| fisher = <math>\begin{pmatrix}1/\sigma^2&0\\0&1/(2\sigma^4)\end{pmatrix}</math> | |||
| conjugate prior = Normal distribution | |||
}} | |||
Revision as of 16:46, 27 April 2015
The normal distribution is
f(x) = (1⁄σ √2π) e-(x-µ) ²⁄2σ ²
Probability density function Probability density function for the normal distribution The red curve is the standard normal distribution | |
Cumulative distribution function Cumulative distribution function for the normal distribution | |
Notation | |
---|---|
Parameters | μ ∈ R — mean (location) σ2 > 0 — variance (squared scale) |
Support | x ∈ R |
CDF | |
Mean | μ |
Median | μ |
Mode | μ |
Variance | |
Skewness | 0 |
Kurtosis | 0 |
Entropy | |
MGF | |
CF | |
Fisher information |
- The parameter μ in this formula is the mean or expectation of the distribution (and also its median and mode).
- The parameter σ is its standard deviation; its variance is therefore σ' 2. A random variable with a Gaussian distribution is said to be normally distributed and is called a normal deviate.