Main Page: Difference between revisions
Jump to navigation
Jump to search
Bradley Monk (talk | contribs) No edit summary |
Bradley Monk (talk | contribs) No edit summary |
||
Line 1: | Line 1: | ||
{{Box|width=46%|float=left|font-size=14px|[[Brownian Motion]]| | {{Box|width=46%|float=left|font-size=14px|[[Brownian Motion]]| | ||
Over the last year my main interest has been the study of synaptic potentiation from an animated, quantitative perspective (read: MCMC methods and simulation). Currently, I'm examining the membrane [[:Category:Diffusion|diffusion]] of neurotransmitter receptors and modeling how these particles swarm and potentiate synapses. It has been an interesting transition into these topics - prior to these projects I worked primarily with brain tissue and mice, but now I find myself spending most of my day programming, running simulations, and working with equations. I'm not sure why, but I find [[:Category:Diffusion|diffusion]] quite interesting. [[:Category:Diffusion|Stochastic diffusion]], like that in [[:Category:Diffusion|Brownian motion]], is a pure actuation of the basic properties of [[:Category:Statistics|statistics]]. Given that synaptic potentiation is directly mediated by stochastic diffusion and synaptic capture of receptors, it seem that neurons have evolved into innate statistical computers. The result of 100 billion of these statistical computers making 100 trillion connections is the human brain. | Over the last year my main interest has been the study of synaptic potentiation from an animated, quantitative perspective (read: MCMC methods and simulation). Currently, I'm examining the membrane [[:Category:Diffusion|diffusion]] of neurotransmitter receptors and modeling how these particles swarm and potentiate synapses. It has been an interesting transition into these topics - prior to these projects I worked primarily with brain tissue and mice, but now I find myself spending most of my day programming, running simulations, and working with equations. I'm not sure why, but I find [[:Category:Diffusion|diffusion]] quite interesting. [[:Category:Diffusion|Stochastic diffusion]], like that in [[:Category:Diffusion|Brownian motion]], is a pure actuation of the basic properties of [[:Category:Statistics|statistics]] - probability distributions in particular. Given that synaptic potentiation is directly mediated by stochastic diffusion and synaptic capture of receptors, it seem that neurons have evolved into innate statistical computers. The result of 100 billion of these statistical computers making 100 trillion connections is the human brain. | ||
* [[:Category:Diffusion|MY NOTES ON MODELING DIFFUSION]] | * [[:Category:Diffusion|MY NOTES ON MODELING DIFFUSION]] |
Revision as of 02:36, 25 April 2015
Welcome to the official wiki of Brad Monk