Main Page: Difference between revisions

From bradwiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
{{Box|width=46%|float=left|font-size=14px|[[Brownian Motion]]|
{{Box|width=46%|float=left|font-size=14px|[[Brownian Motion]]|
Over the last year my main interest has been the study of synaptic potentiation from an animated, quantitative perspective (read: MCMC methods and simulation). Currently, I'm examining the membrane [[:Category:Diffusion|diffusion]] of neurotransmitter receptors and modeling how these particles swarm and potentiate synapses. It has been an interesting transition into these topics - prior to these projects I worked primarily with brain tissue and mice, but now I find myself spending most of my day programming, running simulations, and working with equations. I'm not sure why, but I find [[:Category:Diffusion|diffusion]] quite interesting. [[:Category:Diffusion|Stochastic diffusion]], like that in [[:Category:Diffusion|Brownian motion]], is a pure actuation of the basic properties of [[:Category:Statistics|statistics]]. Given that synaptic potentiation is directly mediated by stochastic diffusion and synaptic capture of receptors, it seem that neurons have evolved into innate statistical computers. The result of 100 billion of these statistical computers making 100 trillion connections is the human brain.
Over the last year my main interest has been the study of synaptic potentiation from an animated, quantitative perspective (read: MCMC methods and simulation). Currently, I'm examining the membrane [[:Category:Diffusion|diffusion]] of neurotransmitter receptors and modeling how these particles swarm and potentiate synapses. It has been an interesting transition into these topics - prior to these projects I worked primarily with brain tissue and mice, but now I find myself spending most of my day programming, running simulations, and working with equations. I'm not sure why, but I find [[:Category:Diffusion|diffusion]] quite interesting. [[:Category:Diffusion|Stochastic diffusion]], like that in [[:Category:Diffusion|Brownian motion]], is a pure actuation of the basic properties of [[:Category:Statistics|statistics]] - probability distributions in particular. Given that synaptic potentiation is directly mediated by stochastic diffusion and synaptic capture of receptors, it seem that neurons have evolved into innate statistical computers. The result of 100 billion of these statistical computers making 100 trillion connections is the human brain.


* [[:Category:Diffusion|MY NOTES ON MODELING DIFFUSION]]  
* [[:Category:Diffusion|MY NOTES ON MODELING DIFFUSION]]  

Revision as of 02:36, 25 April 2015

Brownian Motion

Over the last year my main interest has been the study of synaptic potentiation from an animated, quantitative perspective (read: MCMC methods and simulation). Currently, I'm examining the membrane diffusion of neurotransmitter receptors and modeling how these particles swarm and potentiate synapses. It has been an interesting transition into these topics - prior to these projects I worked primarily with brain tissue and mice, but now I find myself spending most of my day programming, running simulations, and working with equations. I'm not sure why, but I find diffusion quite interesting. Stochastic diffusion, like that in Brownian motion, is a pure actuation of the basic properties of statistics - probability distributions in particular. Given that synaptic potentiation is directly mediated by stochastic diffusion and synaptic capture of receptors, it seem that neurons have evolved into innate statistical computers. The result of 100 billion of these statistical computers making 100 trillion connections is the human brain.

Synaptic Plasticity

Error creating thumbnail: File missing

It is now generally accepted that many forms of adaptive behavior, including learning and memory, engender lasting physiological changes in the brain; reciprocally, neural plasticity among the brain’s synaptic connections provides the capacity for learning and memory. Whenever I have to summarize my primary research focus using just a few words, they always include: "synaptic plasticity". Indeed, I feel that the key to fully understanding cognitive processes like memory formation is through studying neural dynamics at the cellular-network, synaptic, and molecular levels.


Computational Modeling

Broadly, neuroinformatics is the computational modeling and simulation of the nervous system. It involves translating quantitative data collected from neurobiology experiments into mathematical representations. From there, this symbolic representation can be used to create computer simulations of neural activity, network processing, molecular dynamics, and other physical processes. I am using MatLab, Python, R, and other tools to build models and animations that are directly based off my own and others empirical observations.

Brain Functional Connectome Project

A connectome is a comprehensive map of the neural networks within the brain. It details the efferent and afferent pathways within and between brain regions. Functional Connectivity refers to the function of a particular brain region and its information processing role within a distributed neural network. The goal of this project is to create a platform where users can jump into the connectome at any given brain region and visually navigate to upstream and downstream regions; along the way, users can learn about the functional role of each brain region. All information has been collected from empirical sources and scientific databases, in particular, the Allan Brain Atlas. Error creating thumbnail: File missing

Brain Molecular Pathways Project

This project aims to provide annotated sets of molecular pathways involved in neural plasticity underlying learning and memory systems. In general, biological pathways display the series of interactions among molecules resulting in functional changes within cells and neural networks. Currently there are large scale projects dedicated to amassing pathway evidence via high-throughput methods. The goal is to translate this unwieldy biopathway data from several empirical databases into visually digestible material, by characterizing the features of molecular cascades most sensitive to an event of interest (e.g. fear conditioning or amphetamine addiction).

Welcome to the official wiki of Brad Monk

Hello and welcome to my wiki. This is where I stash random information and have every intention of linking it all together someday. I'm not sure why you're here.. maybe trying to find one of my other wiki projects OneSci Science News or UCSD Psych Grad wiki? If you are so inclined, recent additions to this wiki can be found in the box on the right. For a non-curated glimpse of my activity you can check out the latest wiki updates. Older wiki content can be accessed using the [search box] or perusing all pages. If you would like to contact me, you can find this info on my home page.