Normal Distribution: Difference between revisions

From bradwiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 4: Line 4:
f(''x'') {{=}} (<sup>1</sup>&frasl;<sub>σ {{math|{{radical|2π}}}}</sub>) ''e''<sup>-<sup>(x-µ)&thinsp;&sup2;</sup>&frasl;<sub>2&sigma;&thinsp;&sup2;</sub></sup>
f(''x'') {{=}} (<sup>1</sup>&frasl;<sub>σ {{math|{{radical|2π}}}}</sub>) ''e''<sup>-<sup>(x-µ)&thinsp;&sup2;</sup>&frasl;<sub>2&sigma;&thinsp;&sup2;</sub></sup>
</big></big>
</big></big>
{{Probability distribution
  | name      = Normal distribution
  | type      = density
  | pdf_image  = [[File:Normal Distribution PDF.svg|350px|Probability density function for the normal distribution]]<br /><small>The red curve is the ''standard normal distribution''</small>
  | cdf_image  = [[File:Normal Distribution CDF.svg|350px|Cumulative distribution function for the normal distribution]]
  | notation  = <math>\mathcal{N}(\mu,\,\sigma^2)</math>
  | parameters = {{nowrap|''μ'' ∈ '''R'''}} — mean ([[location parameter|location]])<br />{{nowrap|''σ''<sup>2</sup> > 0}} — variance (squared [[scale parameter|scale]])
  | support    = ''x'' ∈ '''R'''
  | pdf        = <math>\frac{1}{\sigma\sqrt{2\pi}}\, e^{-\frac{(x - \mu)^2}{2 \sigma^2}}</math>
  | cdf        = <math>\frac12\left[1 + \operatorname{erf}\left( \frac{x-\mu}{\sigma\sqrt{2}}\right)\right] </math>
  | quantile  = <math>\mu+\sigma\sqrt{2}\,\operatorname{erf}^{-1}(2F-1)</math>
  | mean      = {{math|''μ''}}
  | median    = {{math|''μ''}}
  | mode      = {{math|''μ''}}
  | variance  = <math>\sigma^2\,</math>
  | skewness  = 0
  | kurtosis  = 0 <!-- DO NOT REPLACE THIS WITH THE OLD-STYLE KURTOSIS WHICH IS 3. -->
  | entropy    = <math>\frac12 \ln(2 \pi e \, \sigma^2)</math>
  | mgf        = <math>\exp\{ \mu t + \frac{1}{2}\sigma^2t^2 \}</math>
  | char      = <math>\exp \{ i\mu t - \frac{1}{2}\sigma^2 t^2 \}</math>
  | fisher    = <math>\begin{pmatrix}1/\sigma^2&0\\0&1/(2\sigma^4)\end{pmatrix}</math>
  | conjugate prior = Normal distribution
  }}





Revision as of 16:46, 27 April 2015

The normal distribution is

f(x) = (1σ ) e-(x-µ) ²2σ ²


Normal distribution
Probability density function
Probability density function for the normal distribution
The red curve is the standard normal distribution
Cumulative distribution function
Cumulative distribution function for the normal distribution
Notation
Parameters μR — mean (location)
σ2 > 0 — variance (squared scale)
Support xR
PDF
CDF
Mean μ
Median μ
Mode μ
Variance
Skewness 0
Kurtosis 0
Entropy
MGF
CF
Fisher information


Curve Equation
CDF
PDF
Half Normal Distribution Equations


  • The parameter μ in this formula is the mean or expectation of the distribution (and also its median and mode).
  • The parameter σ is its standard deviation; its variance is therefore σ' 2. A random variable with a Gaussian distribution is said to be normally distributed and is called a normal deviate.