MathTest: Difference between revisions

From bradwiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 5: Line 5:
</nowiki>
</nowiki>


{{Style|size=90%|align=center|border=1px dotted red|font=courier|background=none|color=red|pad=2px|margin=2px|Failed to parse Missing code texvc code executable. Failed to parse texvccheck}}


    Failed to parse Missing <code>texvc</code> executable. Failed to parse texvccheck
{{Style|size=90%|align=center|border=1px dotted red|font=courier|background=none|color=red|pad=2px|margin=2px|Please see math/README to configure. in /home/monakhos/bradleymonk.com/w/extensions/Math/MathInputCheckTexvc.php on line 65}}
    Please see math/README to configure. in /home/monakhos/bradleymonk.com/w/extensions/Math/MathInputCheckTexvc.php on line 65


* Test status: FAIL
* Test status: FAIL
Line 42: Line 42:


* Test status: PASS
* Test status: PASS


; HELL YEAH! ... ''back to work''
; HELL YEAH! ... ''back to work''

Latest revision as of 03:23, 1 May 2015

Performing test of LaTeX maths rendering on this mediawiki

<math>g(x, y, m) = \frac{1}{2\pi t^2} e^{-\frac{x^2 + y^2}{2 t^2}}</math>

Failed to parse Missing code texvc code executable. Failed to parse texvccheck

Please see math/README to configure. in /home/monakhos/bradleymonk.com/w/extensions/Math/MathInputCheckTexvc.php on line 65

  • Test status: FAIL


Modifying LocalSettings.php to use the new MathML (MW_MATH_MATHML)

   ########### LaTeX MATH
   require_once( "$IP/extensions/Math/Math.php" );
   $wgTrustedMathMimetexUrl = '$IP/extensions/cgi-bin/mimetex.cgi?';
   $wgMathValidModes[] = MW_MATH_MATHML;
   $wgUseMathML = true;
   $wgDefaultUserOptions['math'] = MW_MATH_MATHML;
   $wgMathDisableTexFilter = true;
   //Based on MathJax code...
   //$wgMathValidModes[] = MW_MATH_MATHJAX; // Define MathJax
   //$wgUseMathJax = true; // Enable MathJax
   //$wgDefaultUserOptions['math'] = MW_MATH_MATHJAX; // Set MathJax as default
   //$wgMathDisableTexFilter = true; // or compile "texvccheck"


Retest of LaTeX maths rendering on this mediawiki

<math>g(x, y, m) = \frac{1}{2\pi t^2} e^{-\frac{x^2 + y^2}{2 t^2}}</math>


  • Test status: PASS


HELL YEAH! ... back to work


Resources