Malinow

From bradwiki
Revision as of 14:37, 3 July 2013 by Bradley Monk (talk | contribs)
Jump to navigation Jump to search


Getting a Qdot into the cell

  1. Conjugate Qdot with secondary antibody f(ab)
  2. Incubate tissue with primary antibodies for AMPAR and PSD95
  3. Puff Qdots onto cell body, these will bind the primary at AMPAR N-terminus
  4. When AMPARs internalize the Qdot will be dragged into cell
  5. Cleave N-terminus of AMPAR to free Qdot
  6. Qdot can then bind the primary ligated to PSD95


Notes

  • FLASH technology
  • Bredt
  • minisog - gfp
  • Acidic basic polypeptide recognition sequences
  • Talk with nanotech group about various ways to conj. Qdots
  • Nichol and England - couple Qdot to AMPAR agonist
  • Have simulation be a competitive model where AMPARs are competing during LTP
  • Quantitative review on synaptic numbers (Sheng)

PALM STORM

There are two major groups of methods for functional super-resolution microscopy:


1. Deterministic super-resolution: The most commonly used emitters in biological microscopy, fluorophores, show a nonlinear response to excitation, and this nonlinear response can be exploited to enhance resolution. These methods include STED, GSD, RESOLFT and SSIM.

2. Stochastical super-resolution PALM STORM: The chemical complexity of many molecular light sources gives them a complex temporal behaviour, which can be used to make several close-by fluorophores emit light at separate times and thereby become resolvable in time. These methods include SOFI and all single-molecule localization methods (SMLM) such as SPDM, SPDMphymod, PALM, FPALM, STORM and dSTORM.


NRSA