ReDiClusData
{{#tree:id=ReDiClusTree|openlevels=2|root=ReDiClusTree|
}}
{{#tree:id=ReDiClusTree|openlevels=2|root=ReDiClusTree|
}}
3D Surface Plot
2D surface plot with PSD areas marked with boxes
SAP cluster for PSD1, note the size is initially bigger than PSD2
SAP cluster at PSD2, note the number of SAP molecules expressed at the surface of PSD2 (6x6) is initially less than PSD1.
PSD1: post synaptic density area "1". This PSD area is 6x6 units (1 unit equals 1 nm). The AMPAR 'red' particle diffusion rate in the PSD areas are scaled as a function of the total SAP expressed at their surface (D.psd = D.ec/SAP). So if the extracellular diffusion rate is 0.3 µm²/s and there are 10 SAP molecules in PSD1, then PSD1 diffusion rate would be D.psd = .3/10 = 0.03 µm²/s which are empirically relevant values.
PSD2: post synaptic density area "2". This PSD area is 6x6 units (1 unit equals 1 nm). The AMPAR 'red' particle diffusion rate in the PSD areas are scaled as a function of the total SAP expressed at their surface (D.psd = D.ec/SAP). So if the extracellular diffusion rate is 0.3 µm²/s and there are 10 SAP molecules in PSD2, then PSD2 diffusion rate would be D.psd = .3/10 = 0.03 µm²/s which are empirically relevant values. In some experiments run in this model, you may see a set of blue particles appear at varied intervals. These represent calcium influx which impact the repulsion lattice for SAP cluster growth.
This is the diffusion rate meter (aka D-Ometer) for PSD1. It provides information on the moment-to-moment diffusion rate inside PSD1. Note the meter is log scaled from .001 µm²/s to 1.0 µm²/s.
This is the diffusion rate meter (aka D-Ometer) for PSD2. It provides information on the moment-to-moment diffusion rate inside PSD2. Note the meter is log scaled from .001 µm²/s to 1.0 µm²/s.