SI Units
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): 1 m = c * \frac{1}{299792458 s}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): 1 mL = 1 cm^2
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): 1 kg = 1.000025 L water
particles
Failed to parse (syntax error): λν = c
c = speed of light 299792458 (m/s) E = energy of photon v = frequency h = Planck constant = 6.62606e−34 (J•s) or (m^2•kg)/s λ = wavelength J = joule e = charge = 1.60217e−19 (C) or (s•A) C = coulomb = k = boltzmann = 1.38065e−23 (J/K) or (m^2•kg•s^−2)/K K = kelvin NA = Avogadro# = 6.02214e23 (mol−1).
| TeX Syntax (forcing PNG) | TeX Rendering | HTML Syntax | HTML Rendering |
|---|---|---|---|
<math>\alpha</math>
|
{{math|<VAR>α</VAR>}}
|
α | |
<math> f(x) = x^2\,</math>
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): f(x) = x^2\, | {{math|''f''(<var>x</var>) {{=}} <var>x</var><sup>2</sup>}}
|
f(x) = x2 |
<math>\sqrt{2}</math>
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): \sqrt{2} | {{math|{{radical|2}}}}
|
√2 |
<math>\sqrt{1-e^2}</math>
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): \sqrt{1-e^2} | {{math|{{radical|1 − ''e''²}}}}
|
√1 − e² |
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): \operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt = \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}}
\operatorname{erfc}(x) =
\frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt =
\frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}}