Template:ProbabilityEquations
Jump to navigation
Jump to search
- ----------------------------------------*
- PROBABILITY OF EXACT SEQUENCE (e.g. HHHHTT)
- ----------------------------------------*
- P(x) = (p^k) * ((1-p)^(n-k))
- ----------------------------------------*
- ----------------------------------------*
- BINOMIAL RANDOM VARIABLE (BERNULLI)
- ANY SEQUENCE (e.g. 'K' HEADS IN 'N' FLIPS)
- ----------------------------------------*
- P(x) = choose(n,k) * (p^k) * ((1-p)^(n-k))
- ----------------------------------------*
- ----------------------------------------*
- BAYES
- ----------------------------------------*
- P(A¡B) = P(B¡A)*P(A) / [P(B¡A)*P(A) + P(B¡~A)*P(~A)]
- ----------------------------------------*
- Bayes theorem is used for testing conditional probabilities when we know the
- probability of the occurence of event A, and the probability of the occurence
- of event B given that event A has already occurred.
- ----------------------------------------*
- ----------------------------------------*
- PMF Probability Mass Function
- ----------------------------------------*
- PMF is for descrete non-continuous variables
- PMF is a general case for Bernoulli, and can be used for Bernoulli
- The PMF for the variable X is denoted px
- If x is any possible value of X, px(x) = P({X = x})
- ----------------------------------------*
- PMF = [(factorial(n)) / ( (factorial(*a) * factorial(*b) * factorial(*c) )] *
- [P(A^*a) * P(B^*b) * P(C^*c)]
- given that x is a single observation from set X
- where n is total number of x sampled from set X
- where *a is x observations from group A of set X
- where *b is x observations from group B of set X
- where *c is x observations from group C of set X
- where P(A^*a) is the probability of group A to the *a
- where P(B^*b) is the probability of group B to the *b
- where P(C^*c) is the probability of group C to the *c
- and so forth for {A,B,C,...}
- ----------------------------------------*
- ----------------------------------------*
- Geometric Random Variable (GRV)
- ----------------------------------------*
- The GRV is the number of X coin tosses needed for a head to come up for the first time
- defined as px(k) = the probability of x for the k-ith toss
- ----------------------------------------*
- px(k) = ((1-p)^(k-1)) * p
- where p is the probability of flipping Heads on a coin
- where x is the event of getting a Heads
- where k is the number of flips
- where 1-p is the probability of Tails
- where k is the number of flips up to, and including, the first success
- ----------------------------------------*
- ----------------------------------------*
- Poisson Random Variable (PRV)
- ----------------------------------------*
- Use Poisson to calculate PMF when P is really small and N is really big
- ----------------------------------------*
- (exp(-(n*p))) * (((n*p)^k) / factorial(k))
- where n = the number of trials
- where p = probability of H
- where k = the number of successful hits of H
- ----------------------------------------*
- Sij
- Sij = x2
- √1 − e²
- −
- ±
- ×
- ÷
- ⁄
}}