Main Page: Difference between revisions

From bradwiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
{{Box|width=45%|min-width=300px|float=left|font-size=14px|[[Brownian Motion]]|
{{Box|width=45%|min-width=310px|float=left|font-size=14px|[[Brownian Motion]]|
Over the last year my main interest has been the study of synaptic potentiation from an animated, quantitative perspective (read: MCMC methods and simulation). Currently, I'm examining the membrane [[:Category:Diffusion|diffusion]] of neurotransmitter receptors and modeling how these particles swarm and potentiate synapses. It has been an interesting transition into these topics - prior to these projects I worked primarily with brain tissue and mice, but now I find myself spending most of my day programming, running simulations, and working with equations. I'm not sure why, but I find [[:Category:Diffusion|diffusion]] quite interesting. [[:Category:Diffusion|Stochastic diffusion]], like that in [[:Category:Diffusion|Brownian motion]], is a pure actuation of the basic properties of [[:Category:Statistics|statistics]] - probability distributions in particular. Given that synaptic potentiation is directly mediated by stochastic diffusion and synaptic capture of receptors, it seem that neurons have evolved into innate statistical computers. The result of 100 billion of these statistical computers making 100 trillion connections is the human brain.
Over the last year my main interest has been the study of synaptic potentiation from an animated, quantitative perspective (read: MCMC methods and simulation). Currently, I'm examining the membrane [[:Category:Diffusion|diffusion]] of neurotransmitter receptors and modeling how these particles swarm and potentiate synapses. It has been an interesting transition into these topics - prior to these projects I worked primarily with brain tissue and mice, but now I find myself spending most of my day programming, running simulations, and working with equations. I'm not sure why, but I find [[:Category:Diffusion|diffusion]] quite interesting. [[:Category:Diffusion|Stochastic diffusion]], like that in [[:Category:Diffusion|Brownian motion]], is a pure actuation of the basic properties of [[:Category:Statistics|statistics]] - probability distributions in particular. Given that synaptic potentiation is directly mediated by stochastic diffusion and synaptic capture of receptors, it seem that neurons have evolved into innate statistical computers. The result of 100 billion of these statistical computers making 100 trillion connections is the human brain.


Line 7: Line 7:
}}
}}


{{Box|width=45%|min-width=300px|float=right|font-size=14px|[[:Category:Synaptic Plasticity|Synaptic Plasticity]]|[[File:Neuron Synapse.png|right|300px|link=Synaptic Plasticity]]{{Clear}}
{{Box|width=45%|min-width=310px|float=right|font-size=14px|[[:Category:Synaptic Plasticity|Synaptic Plasticity]]|[[File:Neuron Synapse.png|right|300px|link=Synaptic Plasticity]]{{Clear}}
It is now generally accepted that many forms of adaptive behavior, including learning and memory, engender lasting physiological changes in the brain; reciprocally, neural plasticity among the brain’s synaptic connections provides the capacity for learning and memory. Whenever I have to summarize my primary research focus using just a few words, they always include: "'''''synaptic plasticity'''''". Indeed, I feel that the key to fully understanding cognitive processes like memory formation is through studying neural dynamics at the cellular-network, synaptic, and molecular levels.  
It is now generally accepted that many forms of adaptive behavior, including learning and memory, engender lasting physiological changes in the brain; reciprocally, neural plasticity among the brain’s synaptic connections provides the capacity for learning and memory. Whenever I have to summarize my primary research focus using just a few words, they always include: "'''''synaptic plasticity'''''". Indeed, I feel that the key to fully understanding cognitive processes like memory formation is through studying neural dynamics at the cellular-network, synaptic, and molecular levels.  
}}
}}
Line 20: Line 20:
}}
}}


{{Box|width=45%|min-width=300px|float=right|font-size=14px|[[Neural Nets|Machine Learning Tutorial]]|
{{Box|width=45%|min-width=310px|float=right|font-size=14px|[[Neural Nets|Machine Learning Tutorial]]|
[[File:Machine learning tutorial.png|310px|link=Neural Nets]]{{Clear}} <br><br>
[[File:Machine learning tutorial.png|300px|link=Neural Nets]]{{Clear}} <br><br>


I have developed a [[Neural Nets|machine learning tutorial]], focusing on supervised learning, but it also touches on techniques like t-SNE. It makes heavy use of Tensorflow Playground to visualize what is happening in multilayer neural networks during training. It also provides learners with an opportunity to try and solve problems classification problems live right on the web app.  
I have developed a [[Neural Nets|machine learning tutorial]], focusing on supervised learning, but it also touches on techniques like t-SNE. It makes heavy use of Tensorflow Playground to visualize what is happening in multilayer neural networks during training. It also provides learners with an opportunity to try and solve problems classification problems live right on the web app.  
Line 32: Line 32:
<!-- ####################################################### -->
<!-- ####################################################### -->


{{Box|width=45%|min-width=300px|float=left|font-size=14px|[[Connectome|Brain Functional Connectome Project]]|
{{Box|width=45%|min-width=310px|float=left|font-size=14px|[[Connectome|Brain Functional Connectome Project]]|
A [[connectome]] is a comprehensive map of the neural networks within the [[brain]]. It details the [http://en.wikipedia.org/wiki/Efferent_nerve_fiber efferent] and afferent pathways within and between [[brain]] regions. Functional Connectivity refers to the function of a particular [[brain]] region and its information processing role within a distributed neural network. The goal of this project is to create a platform where users can jump into the [[connectome]] at any given [[brain]] region and visually navigate to upstream and downstream regions; along the way, users can learn about the functional role of each [[brain]] region. All information has been collected from empirical sources and scientific databases, in particular, the [http://atlas.brain-map.org Allan Brain Atlas].  
A [[connectome]] is a comprehensive map of the neural networks within the [[brain]]. It details the [http://en.wikipedia.org/wiki/Efferent_nerve_fiber efferent] and afferent pathways within and between [[brain]] regions. Functional Connectivity refers to the function of a particular [[brain]] region and its information processing role within a distributed neural network. The goal of this project is to create a platform where users can jump into the [[connectome]] at any given [[brain]] region and visually navigate to upstream and downstream regions; along the way, users can learn about the functional role of each [[brain]] region. All information has been collected from empirical sources and scientific databases, in particular, the [http://atlas.brain-map.org Allan Brain Atlas].  
[[File:Connectome.jpg|300px|link=Connectome]]
[[File:Connectome.jpg|300px|link=Connectome]]
}}
}}


{{Box|width=45%|min-width=300px|float=right|font-size=14px|[[Brain Molecular Pathways|Brain Molecular Pathways Project]]|
{{Box|width=45%|min-width=310px|float=right|font-size=14px|[[Brain Molecular Pathways|Brain Molecular Pathways Project]]|
This project aims to provide annotated sets of [[Molecular Pathways|molecular pathways]] involved in neural plasticity underlying learning and memory systems. In general, biological pathways display the series of interactions among molecules resulting in functional changes within cells and neural networks. Currently there are large scale projects dedicated to amassing pathway evidence via high-throughput methods. The goal is to translate this unwieldy biopathway data from several [http://www.genome.jp/kegg/ empirical databases] into visually digestible material, by  [[Molecular Pathways|characterizing]] the features of molecular cascades most sensitive to an ''event of interest'' (e.g. fear conditioning or amphetamine addiction).
This project aims to provide annotated sets of [[Molecular Pathways|molecular pathways]] involved in neural plasticity underlying learning and memory systems. In general, biological pathways display the series of interactions among molecules resulting in functional changes within cells and neural networks. Currently there are large scale projects dedicated to amassing pathway evidence via high-throughput methods. The goal is to translate this unwieldy biopathway data from several [http://www.genome.jp/kegg/ empirical databases] into visually digestible material, by  [[Molecular Pathways|characterizing]] the features of molecular cascades most sensitive to an ''event of interest'' (e.g. fear conditioning or amphetamine addiction).


Line 47: Line 47:
<!-- ####################################################### -->
<!-- ####################################################### -->


{{Box|width=45%|min-width=300px|float=left|Welcome to the official wiki of Brad Monk|
{{Box|width=45%|min-width=310px|float=left|Welcome to the official wiki of Brad Monk|
[[Hello]] and welcome to [[User:Monakhos|my wiki]]. This is where I stash random information and have every intention of linking it all together someday. If you are so inclined, recent additions to this wiki can be found in the box on the right. For a non-curated glimpse of my activity you can check out the [[Special:RecentChanges|latest wiki updates]]. Older wiki [[content]] can be accessed using the <nowiki>[search box]</nowiki> or perusing [[Special:AllPages| all pages]]. If you would like to contact me, you can find this info on [http://bradleymonk.com my home page].
[[Hello]] and welcome to [[User:Monakhos|my wiki]]. This is where I stash random information and have every intention of linking it all together someday. If you are so inclined, recent additions to this wiki can be found in the box on the right. For a non-curated glimpse of my activity you can check out the [[Special:RecentChanges|latest wiki updates]]. Older wiki [[content]] can be accessed using the <nowiki>[search box]</nowiki> or perusing [[Special:AllPages| all pages]]. If you would like to contact me, you can find this info on [http://bradleymonk.com my home page].
}}
}}


{{Box|width=45%|min-width=300px|float=right|Popular Categories|
{{Box|width=45%|min-width=310px|float=right|Popular Categories|
{{{!}}
{{{!}}
{{!}}-
{{!}}-

Revision as of 00:11, 26 January 2018

Brownian Motion

Over the last year my main interest has been the study of synaptic potentiation from an animated, quantitative perspective (read: MCMC methods and simulation). Currently, I'm examining the membrane diffusion of neurotransmitter receptors and modeling how these particles swarm and potentiate synapses. It has been an interesting transition into these topics - prior to these projects I worked primarily with brain tissue and mice, but now I find myself spending most of my day programming, running simulations, and working with equations. I'm not sure why, but I find diffusion quite interesting. Stochastic diffusion, like that in Brownian motion, is a pure actuation of the basic properties of statistics - probability distributions in particular. Given that synaptic potentiation is directly mediated by stochastic diffusion and synaptic capture of receptors, it seem that neurons have evolved into innate statistical computers. The result of 100 billion of these statistical computers making 100 trillion connections is the human brain.


Synaptic Plasticity

Error creating thumbnail: File missing

It is now generally accepted that many forms of adaptive behavior, including learning and memory, engender lasting physiological changes in the brain; reciprocally, neural plasticity among the brain’s synaptic connections provides the capacity for learning and memory. Whenever I have to summarize my primary research focus using just a few words, they always include: "synaptic plasticity". Indeed, I feel that the key to fully understanding cognitive processes like memory formation is through studying neural dynamics at the cellular-network, synaptic, and molecular levels.

Actin Modeling

{{{2}}}

Machine Learning Tutorial

Error creating thumbnail: File missing


I have developed a machine learning tutorial, focusing on supervised learning, but it also touches on techniques like t-SNE. It makes heavy use of Tensorflow Playground to visualize what is happening in multilayer neural networks during training. It also provides learners with an opportunity to try and solve problems classification problems live right on the web app.







Brain Functional Connectome Project

A connectome is a comprehensive map of the neural networks within the brain. It details the efferent and afferent pathways within and between brain regions. Functional Connectivity refers to the function of a particular brain region and its information processing role within a distributed neural network. The goal of this project is to create a platform where users can jump into the connectome at any given brain region and visually navigate to upstream and downstream regions; along the way, users can learn about the functional role of each brain region. All information has been collected from empirical sources and scientific databases, in particular, the Allan Brain Atlas. Error creating thumbnail: File missing

Brain Molecular Pathways Project

This project aims to provide annotated sets of molecular pathways involved in neural plasticity underlying learning and memory systems. In general, biological pathways display the series of interactions among molecules resulting in functional changes within cells and neural networks. Currently there are large scale projects dedicated to amassing pathway evidence via high-throughput methods. The goal is to translate this unwieldy biopathway data from several empirical databases into visually digestible material, by characterizing the features of molecular cascades most sensitive to an event of interest (e.g. fear conditioning or amphetamine addiction).

Error creating thumbnail: File missing

Welcome to the official wiki of Brad Monk

Hello and welcome to my wiki. This is where I stash random information and have every intention of linking it all together someday. If you are so inclined, recent additions to this wiki can be found in the box on the right. For a non-curated glimpse of my activity you can check out the latest wiki updates. Older wiki content can be accessed using the [search box] or perusing all pages. If you would like to contact me, you can find this info on my home page.

Popular Categories